Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

Homological algebra初步的初步. Chain complex的定义以及一些性质.

再没有tikz-cd我要死了.

Chain Complex

Definition 1. A chain complex (A,d)(A,d) in an addicitive category A\mathcal{A} is a family of objects and morphisms: $$\cdots\xrightarrow{}A_{n+1}\xrightarrow{d_{n+1}}A_{n}\xrightarrow{d_{n}}A_{n-1}\xrightarrow{}\cdots$$ with di1di=0d_{i-1}\circ d_{i}=0 for all iZi\in\mathbb{Z}.

The family dd as well as its components dnd_{n} is called the
differential of boundary morphism.

Definition 2. A morphism of complexes f:(A,dA)(B,dB)f:(A,d^{A})\to (B,d^{B}) is a family of morphisms: fn:AnBnf_{n}:A_{n}\to B_{n}, nZn\in \mathbb{Z} s.t. the diagram

AnAn¡1BnBn¡1dAnfnfn¡1dBn

commutes. To simplify the notation, we always write it as fdA=dBffd^{A}=d^{B}f.

The category of chain complex in A\mathcal{A} is denoted Ch(A)\mathrm{Ch}(\mathcal{A}). The full subcategory whose objects are of the form $$\cdots\xrightarrow{}A_{1}\xrightarrow{}A_{0}\xrightarrow{}0\xrightarrow{}\cdots$$ is denoted Ch0(A)\mathrm{Ch}_{\geq 0}(\mathcal{A}).

If A\mathcal{A} is an addicitive category, it’s easy to verify Ch(A)\mathrm{Ch}(\mathcal{A}) is an abelian category.

Proposition 1. For morphism f:ABf:A\to B, ff is injective(resp. surjective) if and only if fn:AnBnf_{n}:A_{n}\to B_{n} is injective(resp. surjective) for all nn.

Proof

Proof. Obvious. ◻

Proposition 2. AfBgCA\xrightarrow{f}B\xrightarrow{g}C is exact if and only if for all nn, AnfnBngnCnA_{n}\xrightarrow{f_{n}}B_{n}\xrightarrow{g_{n}}C_{n} are exact.

Proof

Proof. Obvious. ◻

Homology

Definition 3. Let AA be a chain complex, the nn-th homology group of AA is defined to be Hn(A)=Kerdn/Imdn+1H_{n}(A)=\mathrm{Ker}d_{n} /\mathrm{Im}d_{n+1}.

From the diagram

AnAn¡1BnBn¡1dAnfnfn¡1dBn

we can derive H(fn):Hn(A)Hn(B)H(f_{n}):H_{n}(A)\to H_{n}(B) by fn:KerdnAKerdnBf_{n}:\mathrm{Ker}d_{n}^{A}\to \mathrm{Ker}d_{n}^{B} and fn:Imdn+1AImdn+1Bf_{n}:\mathrm{Im}d_{n+1}^{A}\to \mathrm{Im}d_{n+1}^{B} and the universal property of quotient. So we see actually H()H(-) is a functor Hn():Ch(A)AH_{n}(-):\mathrm{Ch}(\mathcal{A})\to \mathcal{A}.

Often, in particular in applications to topology, elements of chain complex AnA_{n} are called nn-chains; elements of Kerdn\mathrm{Ker}d_{n} are called nn-cycles and Kerdn\mathrm{Ker}d_{n} is written Zn=Zn(A)Z_n = Z_n(A); elements of Imdn+1\mathrm{Im}d_{n+1} are called nn-boundaries and Imdn+1\mathrm{Im}d_{n+1} is written Bn=Bn(A)B_n = B_n(A). Two nn-cycles which determine the same element in Hn(A)H_n(A) are called homologous. The element of Hn(A)H_n(A) determined by the nn-cycle cc is called the homology class of cc, and is denoted by [c][c].

Cochain Complex

Definition 4. A chain complex (A,d)(A,d) in an addicitive category A\mathcal{A} is a family of objects and morphisms:

An1dn1AndnAn+1\cdots\xrightarrow{}A^{n-1}\xrightarrow{d_{n-1}}A^{n}\xrightarrow{d^{n}}A^{n+1}\xrightarrow{}\cdots

with didi+1=0d^{i}\circ d^{i+1}=0 for all iZi\in\mathbb{Z}.

The morphisms and cohomology functor is defined similarly.

For a chain complex A=(An,dnA)A=(A_{n},d_{n}^{A}), we can obtain a cochain complex B=(Bn,dBn)B=(B^{n},d^{n}_{B}) by setting Bn=AnB^{n}=A_{-n} and dBn=dnAd^{n}_{B}=d_{-n}^{A}.

Long Exact Sequence Theorem

Lemma 1 (Snake lemma). Let AA be an abelian category. Let

A2B2C200A1B1C1f®g¯°kl

be a commutative diagram with exact rows.

  1. There exists a unique morphism δ:KerγCokerα\delta:\mathrm{Ker}\gamma\to \mathrm{Coker}\alpha s.t. the diagram

B2B2£C2Ker°Ker°B1Coker®`A1B2Coker®¯¼0¼±¿0¿

commutes, where π\pi', π\pi are the canonical projections and τ\tau, τ\tau' are the canonical injections.

  1. The induced sequence $$\mathrm{Ker}\alpha\xrightarrow{f’}\mathrm{Ker}\alpha\xrightarrow{f’}\mathrm{Ker}\beta\xrightarrow{g’}\mathrm{Ker}\gamma\xrightarrow{\delta}\mathrm{Coker}\alpha\xrightarrow{k’}\mathrm{Coker}\beta\xrightarrow{l’}\mathrm{Coker}\gamma$$ is exact. If ff is injective the so is ff', and if ll is surjective then so is ll'.
Proof

Theorem 1 (Long exact seq.). Given a short exact seq. of chain complexes 0AfBgC00\xrightarrow{}A\xrightarrow{f}B\xrightarrow{g}C\xrightarrow{}0, there are connecting morphisms δn:Hn(C)Hn1(A)\delta_{n}:H_{n}(C)\to H_{n-1}(A) s.t. $$\cdots\xrightarrow{} H_{n}(A)\xrightarrow{}H_{n}(B)\xrightarrow{}H_{n}( C)\xrightarrow{\delta_{n}}H_{n-1}(A)\xrightarrow{}H_{n-1}(B)\xrightarrow{}H_{n-1}( C)\xrightarrow{}\cdots$$ is an exact sequence.

Proof

Proof. Consider exact sequence:

0AnfnBngnCn00\xrightarrow{}A_{n}\xrightarrow{f_{n}}B_{n}\xrightarrow{g_{n}}C_{n}\xrightarrow{}0

Since fnf_{n} takes Imdn+1A\mathrm{Im}d_{n+1}^{A} to Imdn+1B\mathrm{Im}d_{n+1}^{B}, gng_{n} takes Imdn+1B\mathrm{Im}d_{n+1}^{B} to Imdn+1C\mathrm{Im}d_{n+1}^{ C}, we have the sequence $$A_{n} /\mathrm{Im}d_{n+1}^{A}\xrightarrow{\bar{f_{n}}} B_{n} /\mathrm{Im}d_{n+1}^{B}\xrightarrow{\bar{g_{n}}}C_{n} /\mathrm{Im}d_{n+1}^{ C}$$ exact. Since gng_{n} surjective, gnˉ\bar{g_{n}} is also surjective. We have the exact sequence $$A_{n} /\mathrm{Im}d_{n+1}^{A}\xrightarrow{\bar{f_{n}}} B_{n} /\mathrm{Im}d_{n+1}^{B}\xrightarrow{\bar{g_{n}}}C_{n} /\mathrm{Im}d_{n+1}^{ C}\xrightarrow{}0$$
Similarly,

0KerdnAKerdnBKerdnC0\xrightarrow{}\mathrm{Ker}d_{n}^{A}\xrightarrow{}\mathrm{Ker}d_{n}^{B}\xrightarrow{}\mathrm{Ker}d_{n}^{C}

is an exact sequence.

Since dndn+1=0d_{n}\circ d_{n+1}=0, we have dn+1Ad_{n+1}^{A} restrict to An/Imdn+1AA_{n} /\mathrm{Im}d_{n+1}^{A} to KerdnA\mathrm{Ker}d_{n}^{A}, we get the commutative diagram:

An=ImdAn+1Bn=ImdBn+1Cn=ImdCn+100KerdAnKerdBnKerdCndAndBndCn

Ker(dnA:An/Imdn+1AKerdnA)=Hn(A)\mathrm{Ker}(d_{n}^{A}:A_{n} /\mathrm{Im}d_{n+1}^{A}\to \mathrm{Ker}d_{n}^{A})=H_{n}(A) and Coker(dnA:An/Imdn+1AKerdnA)=Hn1(A)\mathrm{Coker}(d_{n}^{A}:A_{n} /\mathrm{Im}d_{n+1}^{A}\to \mathrm{Ker}d_{n}^{A})=H_{n-1}(A), by snake lemma, it induces $$\cdots\xrightarrow{} H_{n}(A)\xrightarrow{}H_{n}(B)\xrightarrow{}H_{n}( C)\xrightarrow{\delta_{n}}H_{n-1}(A)\xrightarrow{}H_{n-1}(B)\xrightarrow{}H_{n-1}( C)\xrightarrow{}\cdots$$ ◻

Similarly result for cochain.

For any [c]Hn(C)[c]\in H_{n}(C), bBn\exists b\in B_{n} s.t. gn(b)=cg_{n}(b)=c. Then gn1(dnB(b))=dnC(gn(b))g_{n-1}(d_{n}^{B}(b))=d_{n}^{C}(g_{n}(b)). aAn1\exists a\in A_{n-1} with fn1(a)=dnB(b)f_{n-1}(a)=d_{n}^{B}(b). The map δ\delta takes [c][c] to [a][a].

评论