Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

Homological algebra里的经典导出函子理论, 主要抄书参考 gtm4, 这一节暂时没有涉及到导出函子的计算理论, 以后有空补上. (;′⌒`)

Left Derived Functor

Definition 1. For an object AA in abelian category A\mathcal{A} and its projective resolution PP, let T:Ch(A)Ch(A)T:\mathrm{Ch}(\mathcal{A})\to \mathrm{Ch}(\mathcal{A}) be an addictive functor. We define the left derived functor of TT, LnT(A)=Hn(TP)L_{n}T(A)=H_{n}(TP)

$$TP: \quad \cdots \to TP_{n}\to TP_{n-1}\to\cdots\to TP_{0}\to 0$$

From the Revolution we know for fˉ:AB\bar{f}:A\to B, the morphism fˉ\bar{f} induces f:PQf:P\to Q, where PP, QQ are projective resolution of AA, BB respectively. So when applying H()H(-), the left derived functor is indeed a functor.

Now we verify LnT(A)L_{n}T(A) is well-defined, i.e. for P,QP, Q two projective resolution of AA, there’s an isomorphism LnPT(A)LnQT(A)L_{n}^{P}T(A)\cong L_{n}^{Q}T(A).

Since the two projective resolutions are of the same homotopy type, i.e. f:PQ\exists f:P\to Q and g:QPg:Q\to P with fgidQfg\simeq id_{Q}, gfidPgf\simeq id_{P}. Then TfTf, TgTg gives homotopy equivalence between TPTP and TQTQ since TT is addictive. Since homotopic morphisms will give the same homology morphisms, we have Hn(TP)Hn(TQ)H_{n}(TP)\cong H_{n}(TQ), i.e. LnPT(A)LnQT(A)L_{n}^{P}T(A)\cong L_{n}^{Q}T(A).

Definition 2. An covariant functor FF is left eact if for every exact sequence 0A1A2A30\to A_{1}\to A_{2}\to A_{3}, the sequence 0FA1FA2FA30\to FA_{1}\to FA_{2}\to FA_{3} is exact.

Definition 3. An covariant functor FF is right eact if for every exact sequence A1A2A30A_{1}\to A_{2}\to A_{3}\to 0, the sequence FA1FA2FA30FA_{1}\to FA_{2}\to FA_{3}\to 0 is exact.

Definition 4. An covariant functor FF is eact if it is left and right exact.

Theorem 1. Let T:Ch(A)Ch(A)T:\mathrm{Ch}(\mathcal{A})\to \mathrm{Ch}(\mathcal{A}) be a right exact functor, then L0TL_{0}T and TT are naturally isomorphic.

Proof

Proof. For a projective resolution PP of AA, applying TT to PP, we have TP1TP0TA0TP_{1}\to TP_{0}\to TA\to 0 exact. So H0(TP)TAH_{0}(TP)\cong TA. The naturality is obvious. ◻

Proposition 1. The functor LnT:AAL_{n}T:\mathcal{A}\to\mathcal{A} is an addictive functor.

Proof

Proof. Omitted. ◻

Theorem 2. Let 0KqfPq1P0A00\to K_{q}\xrightarrow{f} P_{q-1}\to \cdots\to P_{0}\to A\to 0 be an exact sequence with Pq1,,P0P_{q-1},\dots, P_{0} projective. If TT is right exact, then the sequence

$$0\to L_{q}TA\to TK_{q}\xrightarrow{Tf}TP_{q-1}$$

is exact.

Proof

Proof. Consider Pq+1PqKq0\cdots\to P_{q+1}\to P_{q}\to K_{q}\to 0 a projective resolution of KqK_{q}. Then we get an projective resolution of AA by

Pq+1PqPq1P0A0\cdots\to P_{q+1}\to P_{q}\to P_{q-1}\to \cdots\to P_{0}\to A\to 0

Since TT is right exact, we consider the diagram

TPq+1TPqTKq000TPq¡1TPq¡1Tdq+1TdqTfid

By snake lemma, we get an exact sequence

TPq+1Tdq+1KerTdqKerTfδ0TP_{q+1}\xrightarrow{Td_{q+1}}\mathrm{Ker}Td_{q}\to \mathrm{Ker}Tf\xrightarrow{\delta}0

By exactness, KerTfKerTdq/ImTdq+1=Hq(TP)\mathrm{Ker}Tf\cong \mathrm{Ker}Td_{q} /\mathrm{Im}Td_{q+1}=H_{q}(TP). ◻

Using duality, we have a similar theorem:

Theorem 3. Let PqdqPq1P0A0P_{q}\xrightarrow{d_{q}}P_{q-1}\to \cdots\to P_{0}\to A\to 0 be an exact sequence, where Pq1,,P0P_{q-1}, \dots, P_{0} are projective. If TT is left exact, then the sequence

$$T(P_{q})\to T(\mathrm{Im}d_{q})\to L_{q-1}T(A)\to 0$$

is exact.

Right Derived Functor

Definition 5. For an object AA in abelian category A\mathcal{A} and its injective resolution II, let T:Coch(A)Coch(A)T:\mathrm{Coch}(\mathcal{A})\to \mathrm{Coch}(\mathcal{A}) be an addictive functor. We define the right derived functor of TT, RnT(A)=Hn(TI)R^{n}T(A)=H^{n}(TI)

$$TI: \quad 0\to TI_{0}\to\cdots\to TI_{q}\to TI_{q+1}\to \cdots$$

Similarly, we can prove RnTR^{n}T is a well-defined functor.

Theorem 4. If TT is left exact, then R0TR^{0}T is naturally isomorphic to TT.

Proof

Proof. Omitted. ◻

If we choose TT to be a controvariant functor, we use the projective resolution PP of AA to make TPTP a cochain. Then we will have similar proposition as left derived functor.

Derived Long Exact Sequence

From the long exact sequence theorem, we can derive the following theorems.

Lemma 1 (Horseshoe). For exact sequence 0AfAgA00\to A'\xrightarrow{f}A\xrightarrow{g}A''\to 0 and projective resolution PP', PP'' of AA' and AA'' respectively. There exists projective resolution PP of AA s.t. the following diagram commutes and rows exact.

0P0PP0000A0AA000000¹f¹gfg

Proof

Proof. Let P=PPP=P'\oplus P'', we have PP also a projective and acyclic chain complex. Then 0PPP00\to P'\to P\to P''\to 0 is an exact sequence.

We use induction to build PA0P\to A\to 0.

First for n=0n=0:

0P00P0P00000A0AA00000d0d0h0d0fg

By projectivity, we can find h0:P0Ah_{0}:P''_{0}\to A with gh0=d0gh_{0}=d_{0}. Since P0P_{0} is a direct sum and

P0fd0Ah0P0P'_{0}\xrightarrow{fd_{0}}A\xleftarrow{h_{0}}P''_{0}

we have a unique morphism d0:P0Ad_{0}:P_{0}\to A. Using the snake lemma we can conclude P0A0P_{0}\to A\to 0 exact.

Suppose for n1n\geq 1, the induction step is exactly the same as n=0n=0. ◻

Now we give the long exact sequence theorem of left derived functor.

Theorem 5. Let T:Ch(A)Ch(A)T:\mathrm{Ch}(\mathcal{A})\to \mathrm{Ch}(\mathcal{A}) be a covariant addictive functor. 0AAA00\to A' \to A\to A''\to 0 is a short exact sequence. Then there are ωn:LnTALn1TA\omega_{n}:L_{n}TA''\to L_{n-1}TA' s.t. the following sequence exact

LnTALnTALnTALn1TAL0TA0\cdots\to L_{n}TA'\to L_{n}TA\to L_{n}TA''\to L_{n-1}TA'\to \cdots\to L_{0}TA''\to 0

Proof

Proof. Applying lemma above to we get a commtative dagram with exact rows:

0P0PP0000A0AA000

Since P=PPP=P'\oplus P'', TT is addictive, we have 0TPTPTP00\to TP'\to TP\to TP''\to 0 exact. Using long exact sequence theorem we have the long exact sequence

LnTALnTALnTALn1TAL0TA0\cdots\to L_{n}TA'\to L_{n}TA\to L_{n}TA''\to L_{n-1}TA'\to \cdots\to L_{0}TA''\to 0

Let θ:TT\theta:T\to T' be a natural transformation, we can define morphism θP:TPTP\theta_{P}:TP\to T'P. Then θP\theta_{P} induces a natural transformation θAn:LnTALnTA\theta_{A}^{n}:L_{n}TA\to L_{n}T'A.

Theorem 6. Let θ:TT\theta:T\to T' be a natural transformation. The diagram is commtative with exact rows

0A0AA0000B0BB000

Then the following diagram commutes with exact rows:

1.

¢¢¢LnTA0LnTALnTA00Ln¡1TA0¢¢¢¢¢¢LnT0A0LnT0ALnT0A00Ln¡1T0A0¢¢¢

2.

¢¢¢LnTA0LnTALnTA00Ln¡1TA0¢¢¢¢¢¢LnTB0LnTBLnTB00Ln¡1TB0¢¢¢

Proof

Proof. Omitted. Using generalized snake lemma. ◻

Definition 6. We say a sequence of functor 0TTT00\to T'\to T\to T''\to 0 exact on projectives if for every projective objects PP, the sequence 0TPTPTP00\to T'P\to TP\to T''P\to 0 is exact.

Theorem 7. Let the sequence 0TTT00\to T'\to T\to T''\to 0 be exact on projectives. Then for every object AA, there are morphisms ωn:LnTALnTA\omega_{n}:L_{n}T''A\to L_{n}T'A s.t. there’s long exact sequence

LnTALnTALnTALn1TAL0TA0\cdots\to L_{n}T'A\to L_{n}TA\to L_{n}T''A\to L_{n-1}T'A\to \cdots\to L_{0}T''A\to 0

Proof

Proof. Omitted. ◻

Theorem 8. Let f:AAf:A\to A' be a morphism and

0T0TT0000S0SS000

be a commtative diagram with exact rows on projectives. Then the following diagrams commtutes with exact rows:

1.

¢¢¢LnT0ALnTALnT00ALn¡1T0A¢¢¢¢¢¢LnT0A0LnTA0LnT00A0Ln¡1T0A0¢¢¢

2.

¢¢¢LnT0ALnTALnT00ALn¡1T0A¢¢¢¢¢¢LnS0ALnSALnS00ALn¡1S0A¢¢¢

Proof

Proof. Omitted. Using generalized snake lemma. ◻

评论