Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

这部分是double complex的一些内容, 内容比较少, 主要就是为了给后面的kunneth formula有个基本的定义啥的, 不考虑Tot函子的整体性质整块内容也没啥需要证明的, 摸了.👻 Stack Project 里面有很全的内容.

Double Complex

Definition 1. Let A\mathcal{A} be an addictive category. A double chain complex AA is given by {Ap,q,dp,q1,dp,q2}p,qZ\{A_{p,q},d_{p,q}^{1},d_{p,q}^{2}\}_{p,q\in\mathbb{Z}} where dp,q1:Ap,qAp1,qd_{p,q}^{1}:A_{p,q}\to A_{p-1,q} and dp,q2:Ap,qAp,q1d_{p,q}^{2}:A_{p,q}\to A_{p,q-1} are morphisms of A\mathcal{A} s.t. the following conditions hold:

1. dp1,q1dp,q1=0d_{p-1,q}^{1}\circ d_{p,q}^{1}=0;

2. dp,q12dp,q2=0d_{p,q-1}^{2}\circ d_{p,q}^{2}=0;

3. dp,q11dp,q2=dp1,q2dp,q1d_{p,q-1}^{1}\circ d_{p,q}^{2}=d_{p-1,q}^{2}\circ d_{p,q}^{1}.

for all p,qZp,q\in \mathbb{Z}.

The definition of double cochain complex is similar.

Definition 2. For a double complex, its total complex Tot(C)\mathrm{Tot}(C) is given by Tot(C)n=p+q=nCp,q\mathrm{Tot}(C)_{n}=\oplus_{p+q=n}C_{p,q} with the differential morphism dnTot=p+q=n(dp,q1+dp,q2)d_{n}^{\mathrm{Tot}}=\sum_{p+q=n}(d_{p,q}^{1}+d_{p,q}^{2}). We can verify dnTotdn+1Tot=0d_{n}^{\mathrm{Tot}}\circ d_{n+1}^{\mathrm{Tot}}=0.

Notice that in abelian category we may not have p+q=nCp,q\oplus_{p+q=n}C_{p,q}. Then we can use p+q=nCp,q\prod_{p+q=n}C_{p,q} to substitute it. We can define the homology on the partial chain complex (Ap,q,dp,q1)(A_{p,q},d_{p,q}^{1}) and
(Ap,q,dp,q2)(A_{p,q},d_{p,q}^{2}).

Definition 3. For two complex C,DC, D, we can define the tensor product of CC and DD as TotB\mathrm{Tot}B, where Bp,q=CpDqB_{p,q}=C_{p}\otimes D_{q}, dp,q1=dp,qidd_{p,q}^{1}=d_{p,q}\otimes id, dp,q2=(1)piddp,qd_{p,q}^{2}=(-1)^{p} id\otimes d_{p,q}, dnTot=p+q=ndp,q1+dp,q2d_{n}^{\mathrm{Tot}}=\sum_{p+q=n}d_{p,q}^{1}+d_{p,q}^{2}.

Definition 4. For two complex C,DC, D, we can define the Hom of CC and DD as TotB\mathrm{Tot}B, where Bp,q=Hom(Cp,Dq)B_{p,q}=\mathrm{Hom}(C_{-p},D_{q}), dp,q1(f)(c)=(1)p+q+1fdp1(c)d_{p,q}^{1}(f)(c)=(-1)^{p+q+1}fd_{p-1}(c), dp,q2(f)(c)=dpf(c)d_{p,q}^{2}(f)(c)=d_{p}f(c).

Proposition 1. Morphisms f:CCf:C\to C', g:DDg:D\to D' induce chain complex maps

ff:CDCDf\otimes f:C\otimes D\to C'\otimes D'

Hom(f,g):Hom(C,D)Hom(C,D)\mathrm{Hom}(f,g):\mathrm{Hom}(C',D)\to \mathrm{Hom}(C,D')

If fff\simeq f' and ggg\simeq g', then fgfgf\otimes g\simeq f'\otimes g', Hom(f,g)Hom(f,g)\mathrm{Hom}(f,g)\simeq \mathrm{Hom}(f',g').

Proposition 2. If CCC\simeq C', DDD\simeq D', then CDCDC\otimes D\simeq C' \otimes D', Hom(C,D)Hom(C,D)\mathrm{Hom}(C,D)\simeq \mathrm{Hom}(C',D').

评论