Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

Yoneda lemma的同调代数版本. 这是个很神奇的事情, 可以通过natural transformation 和Ext函子来计算一些函子的左导出函子. 整体的证明参考了论文The Yoneda isomorphism commutes with homology

Homological Yoneda Lemma

In Mod\mathrm{Mod} category. Let 0Rn1Pn1P0A00\to R_{n-1}\to P_{n-1}\to\cdots\to P_{0}\to A\to 0 be an exact sequence with Pn1,,P0P_{n-1},\dots,P_{0} projective. Let TT be an addictive functor. Define L~nTA=Ker(TRn1TPn1)\tilde{L}_{n}TA=\mathrm{Ker}(TR_{n-1}\to TP_{n-1}). Then we have L~nTA=LnTA\tilde{L}_{n}TA=L_{n}TA, the left derived functor of TT.

Theorem 1. Let T:ModAT: \mathrm{Mod}\to \mathcal{A} be an addictive covariant functor, TT right exact and AA be an module. Then there are natural isomorphism

Γ:Nat(ExtAn(A,),T)LnTA\Gamma:\mathrm{Nat}(\mathrm{Ext}_{\mathcal{A}}^{n}(A,-),T)\to L_{n}TA

Proof

Proof. We prove the functor HnH^{n} commutes with Yoneda embedding, i.e. Nat(HnHom(A,),T)HnTA\mathrm{Nat}(H^{n}\mathrm{Hom}(A,-),T)\xrightarrow{\cong}H_{n}TA. Here AA is a chain complex

An+1dn+1AndnAn1dn1\cdots\to A_{n+1}\xrightarrow{d_{n+1}}A_{n}\xrightarrow{d_{n}}A_{n-1}\xrightarrow{d_{n-1}}\cdots

and

Hom(An1,)dnHom(An)dn+1Hom(An+1)\cdots\to \mathrm{Hom}(A_{n-1},-)\xrightarrow{d_{n}^{*}}\mathrm{Hom}(A_{n})\xrightarrow{d_{n+1}^{*}}\mathrm{Hom}(A_{n+1})\to \cdots

We compute Nat(HnHom(A,),T)\mathrm{Nat}(H^{n}\mathrm{Hom}(A,-),T).

Nat(HnHom(A,),T)Nat(Coker(Hom(An1,)Ker(dn+1)),T)Ker(Nat(Ker(dn+1),T)Nat(Hom(An1,),T))Ker(Nat(Hom(Coker(dn+1),),T)Nat(Hom(An1,),T))Ker(TCoker(dn+1TAn1))Ker(Coker(Tdn+1)TAn1)=HnTA\begin{aligned} \mathrm{Nat}(H^{n}\mathrm{Hom}(A,-),T) &\cong \mathrm{Nat}(\mathrm{Coker}(\mathrm{Hom}(A_{n-1},-)\to \mathrm{Ker}(d_{n+1}^{*})),T)\\&\cong \mathrm{Ker}(\mathrm{Nat}(\mathrm{Ker}(d_{n+1}^{*}),T)\to \mathrm{Nat}(\mathrm{Hom}(A_{n-1},-),T))\\&\cong \mathrm{Ker}(\mathrm{Nat}(\mathrm{Hom}(\mathrm{Coker}(d_{n+1}),-),T)\to \mathrm{Nat}(\mathrm{Hom}(A_{n-1},-),T))\\& \cong \mathrm{Ker}(T\mathrm{Coker}(d_{n+1}\to TA_{n-1}))\\& \cong \mathrm{Ker}(\mathrm{Coker}(Td_{n+1})\to TA_{n-1})=H_{n}TA\end{aligned}

The last to isomorphism is given by Yoneda lemma and right exactness, respectively. If we do not have TT right exact, then we have Ker(TCoker(dn+1)TAn1)L~nTA\mathrm{Ker}(T\mathrm{Coker}(d_{n+1})\to TA_{n-1})\cong \tilde{L}_{n}TA. ◻

Proposition 1. Every natural transformation ϕ:ExtA1(A,)ExtA1(A,)\phi:\mathrm{Ext}_{\mathcal{A}}^{1}(A,-)\to \mathrm{Ext}_{\mathcal{A}}^{1}(A',-) is induced by a morphism f:AAf:A'\to A.

Proof

Proof. We have Nat(ExtA1(A,)ExtA1(A,))L~1(ExtA1(A,))(A)\mathrm{Nat}(\mathrm{Ext}_{\mathcal{A}}^{1}(A,-)\to \mathrm{Ext}_{\mathcal{A}}^{1}(A',-))\cong \tilde{L}_{1}(\mathrm{Ext}_{\mathcal{A}}^{1}(A',-))(A). For 0RPA00\to R\to P\to A\to 0 a projective presentation of AA,

L~1(ExtA1(A,))(A)=Ker(ExtA1(A,R)ExtA1(A,P))\tilde{L}_{1}(\mathrm{Ext}_{\mathcal{A}}^{1}(A',-))(A)=\mathrm{Ker}(\mathrm{Ext}_{\mathcal{A}}^{1}(A',R)\to\mathrm{Ext}_{\mathcal{A}}^{1}(A',P))

From the long exact sequence theorem, we have

Hom(A,P)Hom(A,A)ExtA1(A,R)ExtA1(A,P)\cdots\to \mathrm{Hom}(A',P)\to \mathrm{Hom}(A',A)\to \mathrm{Ext}_{\mathcal{A}}^{1}(A',R)\to \mathrm{Ext}_{\mathcal{A}}^{1}(A',P)\to \cdots

Thus any natural transformation θ\theta is mapped by an element ff in Hom(A,A)\mathrm{Hom}(A',A).

We omit the proof of the proposition: θ\theta is indeed induced by ff. See Hilton & Stammbach. ◻

评论