Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

微分流形初步的单位分解定理, 这个定理本质上是流形paracompactness所带来的结论. 它提供了一种通过乘上partition of unity函数的方式来将locally smooth的函数粘贴成global smooth的函数的方式. 下面的Whitney approximation theorem便是一个直接的例子.

Paracompactness of Manifold

First we give the construction of bump function. Here we use those function fCf\in C^{\infty} s.t. f1f\equiv 1 on cubic C(1)ˉ\bar{C(1)} and f0f\equiv 0 outside C(2)C(2).

Consider the function f(t)={e1tt>00t0f(t)=\left\{\begin{aligned} &e^{-\frac{1}{t}}\quad &t>0\\&0\quad &t\leq 0 \end{aligned}\right. then fCf\in C^{\infty}. Take g(t)=f(t)f(t)+f(t)g(t)=\frac{f(t)}{f(t)+f(-t)}, gCg\in C^{\infty} and g1g\equiv 1 for all t1t\geq 1, g=0g=0 for all t0t\leq 0. Take h(t)=g(2+t)g(2t)h(t)=g(2+t)g(2-t), then hCh\in C^{\infty} and h1h\equiv 1 on [1,1][-1,1] and h0h\equiv 0 outside (2,2)(-2,2). Finally, just take the function to be φ=i=1nhri\varphi=\prod\limits_{i=1}^{n}h\circ r_{i}, where rir_{i} are coordinate function.

Lemma 1. Let XX be a topological space which is locally compact, Hausdorff and second countable, then XX is paracompact.

Proof

Proof. First, we construct a sequence of open sets GiG_{i} s.t. Gˉi\bar{G}_{i} compact, GˉiGi+1\bar{G}_{i}\subset G_{i+1} and X=i=1GiX=\cup_{i=1}^{\infty}G_{i}. Let {Ui}iI\{U_{i}\}_{i\in I} be a countable basis of XX and Uˉi\bar{U}_{i} compact. This can be shown by following:

We consider the set {Ui}iJ\{U_{i}\}_{i\in J} with Uˉi\bar{U}_{i} compact, we show that {Ui}iJ\{U_{i}\}_{i\in J} also a basis of XX. We only need to show V{Ui}iI\forall V\in\{U_{i}\}_{i\in I}, V=UjV=\cup U_{j} with jJj\in J. xV\forall x\in V, C\exists C compact and xUCx\in U\subset C. Then
Uˉ\bar{U} compact, then xUVUVˉCx\in U\cap V\subset\bar{U\cap V}\subset C and UVˉ\bar{U\cap V} compact.

Then we get such a countable basis: {Ui}iI\{ U_{i}\}_{i\in I} and Uˉi\bar{U}_{i} compact.

Take G1=U1G_{1}=U_{1}, Gk=U1UjkG_{k}=U_{1}\cup \cdots\cup U_{j_{k}}, let jk+1j_{k+1} be the smallest number s.t. Gkˉi=1jk+1Ui\bar{G_{k}}\subset \cup_{i=1}^{j_{k+1}}U_{i} and Gk+1=i=1jk+1UiG_{k+1}=\cup_{i=1}^{j_{k+1}}U_{i}. Then we have a sequence {Gk}\{G_{k}\} satisfying the condition in the beginning of proof. GˉkGk1\bar{G}_{k}-G_{k-1} is a compact set and GˉkGk1Gk+1Gk2ˉ\bar{G}_{k}-G_{k-1}\subset G_{k+1}-\bar{G_{k-2}}.

For any k3k\geq 3, for the cover {Uα(Gk+1Gˉk2)}αA\{U_{\alpha}\cap (G_{k+1}-\bar{G}_{k-2})\}_{\alpha\in A} of GˉkGk1\bar{G}_{k}-G_{k-1}, we choose a finite subcover {Uα(Gk+1Gˉk2)}αA\{U_{\alpha}\cap (G_{k+1}-\bar{G}_{k-2})\}_{\alpha\in A}. This collection is obviously a countable and locally finite refinement of open cover {Uα}αA\{U_{\alpha}\}_{\alpha\in A}. ◻

Partition of Unity

Definition 1. A partition of unity on MM is a collection {φi}iI\{\varphi_{i}\}_{i\in I} of CC^{\infty} functions on MM s.t.

1. The collection of {Suppφi}iI\{Supp \varphi_{i}\}_{i\in I} is locally finite;

2. iIφi(p)=1\sum\limits_{i\in I}\varphi_{i}(p)=1 for pMp\in M and φi(p)0\varphi_{i}(p)\geq 0 for all pMp\in M and iIi\in I.

Now we give the partition of unity theorem.

Theorem 1 (partition of unity). Let MM be a smooth manifold and {Uα}αA\{U_{\alpha}\}_{\alpha\in A} be an open cover of MM. Then there exists a countable partition of unity {φi}\{\varphi_{i}\} subordinate to the cover {Uα}\{U_{\alpha}\} with SuppφiSupp \varphi_{i} compact for each ii.

Proof

Proof. We choose the sequence {Gi}\{G_{i}\} of MM and G0=G_{0}=\varnothing. For pMp\in M, let ipi_{p} be the largest integer s.t. pMGˉipp\in M-\bar{G}_{i_{p}}. Choose αp\alpha_{p} s.t. pUαpp\in U_{\alpha_{p}} and let (V,τ)(V,\tau) be a coordinate system centered at pp s.t. V(Uαp(Gip+2Gˉip))V\subset (U_{\alpha_{p}}\cap (G_{i_{p+2}}-\bar{G}_{i_{p}})) and τ(V)\tau(V) contains cube C(2)ˉ\bar{C(2)}.

Define ψp={φτon V0otherwise\psi_{p}=\left\{\begin{aligned} &\varphi\circ \tau\quad & \text{on }V\\ &0\quad &\text{otherwise} \end{aligned}\right. φ\varphi is the bump function. Then ψp\psi_{p} is a CC^{\infty} function on MM which has value 1 on some open neighborhood wpw_{p} of pp and has compact support in VUαp(Gip+2Gˉip)V\subset U_{\alpha_{p}}\cap (G_{i_{p+2}}-\bar{G}_{i_{p}}). For each k1k\geq 1, choose a finite set of points pp in MM s.t. {wp}\{w_{p}\} covers GˉiGi1\bar{G}_{i}-G_{i-1}, the SuppφiSupp \varphi_{i} form a locally finite family of subsets of MM.

Take ψ=j=1ψj\psi=\sum\limits_{j=1}^{\infty}\psi_{j}, ψ\psi is a well-defined CC^{\infty} function and ψ(p)>0\psi(p)>0 for each pMp\in M. For i=1,2,i=1,2,\dots, define φi=ψiψ\varphi_{i}=\frac{\psi_{i}}{\psi}. Then {ψi}\{\psi_{i}\} is a partition of unity subordinate {Uα}\{U_{\alpha}\} with {Suppφi}\{Supp \varphi_{i}\} compact. ◻

Theorem 2 (Whitney approximation theorem). Let MM be a smooth manifold, and AMA \subset M a closed subset. Then for any continuous function g:MRg:M\to R which is smooth on AA and any positive continuous function δ:MR>0\delta:M\to R>0, there exists fC(M)f\in C^{\infty}(M) so that f(p)=g(p)f(p)=g(p) for all pAp\in A and f(p)g(p)<δ(p)\left| f(p)-g(p) \right|<\delta(p) for all pMp\in M.

Here gg smooth on AA means UA\exists U\supset A with a function g0=gg_{0}=g on AA and g0g_{0} smooth on UU.

Proof

Proof. There is an open set UAU\supset A and a smooth function g0g_{0} defined on UU s.t. g0=gg_{0}=g on AA. Let U0={pUg0(p)g(p)<δ(p)}U_{0}=\{p\in U| \left| g_{0}(p)-g(p) \right|<\delta(p) \}. Then U0U_{0} is open in MM and U0AU_{0}\supset A.

Now we construct a open cover of MAM-A, for any qMAq\in M-A, let Uq={pMAg(p)g(q)<δ(p)}U_{q}=\{p\in M-A\left| g(p)-g(q) \right| <\delta(p)\}. Then {UqqMA}\{U_{q}|q\in M-A\} is an open covering of MAM-A. Let {φ0,φqqM}\{\varphi_{0}, \varphi_{q}|q\in M\} be a partition of unity subordinate the cover {U0,UqqM}\{U_{0}, U_{q}|q\in M\} of MM and define a function on MM by

f(p)=φ0(p)g0(p)+qMφq(p)g(q)f(p)=\varphi_{0}(p)g_{0}(p)+\sum\limits_{q\in M}\varphi_{q}(p)g(q)

Since the support is locally finite, ff is smooth, f=g0f=g_{0} on AA. Moreover, for any qMq\in M, we have

f(p)g(p)=φ0(p)+g0(p)+qφq(p)g(q)φ0(p)g(p)qφq(p)g(p)φ0(p)g0(p)g(p)+qφq(p)g(q)g(p)<φ0(p)δ(p)+qφq(p)δ(p)=δ(p)\begin{aligned} \left| f(p)-g(p) \right| &=\left| \varphi_{0}(p)+g_{0}(p)+\sum_{q}\varphi_{q}(p)g(q)-\varphi_{0}(p)g(p)-\sum_{q}\varphi_{q}(p)g(p) \right|\\&\leq \varphi_{0}(p)\left| g_{0}(p)-g(p) \right| +\sum_{q}\varphi_{q}(p)\left| g(q)-g(p) \right| \\&<\varphi_{0}(p)\delta(p)+\sum_{q}\varphi_{q}(p)\delta(p)\\&=\delta(p)\end{aligned}

评论