Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

Injective 是projective 的对偶, 但是在问题的处理上却复杂得多. 核心原因是我们在处理projective module 时是去寻找一个打到它的满射, 而injective module 则是需要寻找一个从它出发的单射. Zorn引理在这里具有很强的效果. Baer 判别法也是一个很有效的工具.

Injective Module

Injective is the dual of projective.

Definition 1. An RR-module II is injective if for any exact sequence 0AiB0\to A\xrightarrow{i} B and f:AIf:A\to I, there exists an homomorphism g:BIg:B\to I s.t. f=gif=g\circ i.

We have similar results as projective module.

Theorem 1. The functor Hom(,I)\mathrm{Hom}(-,I) is exact if and only if II is injective.

Proof

Proof. Similar to the projective. Omitted. ◻

Lemma 1. For any family of injective modules {Mi}iI\{M_{i}\}_{i\in I}, iIMi\prod\limits_{i\in I}M_{i} is also injective.

Proof

Proof. For exact sequence 0AiB0\to A\xrightarrow{i}B and f:AiIMif:A\to \prod\limits_{i\in I} M_{i}, we will have πif:AMi\pi_{i}\circ f:A\to M_{i} the homomorphisms. Using the universal property of product, we have gi:BMig_{i}:B\to M_{i} with gii=πifg_{i}\circ i=\pi_{i}\circ f. ◻

Lemma 2. If MNM\oplus N is injective, the so are MM and NN.

Proof

Proof. Consider the diagram

M0ABfi

with the bottom row exact, we have

MM©N0ABj¼fi

Here jf:AMNj\circ f:A \to M\oplus N, and by injectivity of MNM\oplus N, we have g:BMNg:B\to M\oplus N with gi=jfg\circ i=j\circ f, so (πg)i=π(jf)=f(\pi\circ g)\circ i=\pi\circ (j\circ f)=f. Thus MM is injective. Similar for NN. ◻

Now we give a very useful criterion for injective module:

Theorem 2. An RR-module EE is injective if and only if every homomorphism f:IEf:I\to E from an ideal II of RR can be extended to the whole ring, i.e. g:RE\exists g:R\to E, for gI=fg|_{I}=f.

Proof

Proof. Assume EE injective is clear.

Conversely, for any diagram

E0MNf

with the bottom row exact, we can regard MM as the submodule of NN, consider the set

Σ={(A,g)MAN,g:AE,f can be extend to g}\Sigma=\{(A,g)|M\subseteq A\subseteq N, g:A\to E, f \text{ can be extend to g}\}

Σ\Sigma is obviously a nonempty partially ordered set. For any chain CΣC\subset \Sigma, choose ((Ai,gi)CAi,(Ai,gi)Cgi)(\bigcup\limits_{(A_{i},g_{i})\in C}A_{i}, \bigcup\limits_{(A_{i},g_{i})\in C}g_{i}), here (Ai,gi)Cgi\bigcup\limits_{(A_{i},g_{i})\in C}g_{i} means aAi\forall a\in A_{i}, agi(a)a\mapsto g_{i}(a). Obviously, ((Ai,gi)CAi,(Ai,gi)Cgi)(\bigcup\limits_{(A_{i},g_{i})\in C}A_{i}, \bigcup\limits_{(A_{i},g_{i})\in C}g_{i}) is an upper bound of CC. Thus Σ\Sigma has a maximal element (A,g)(A,g).

Now we show A=NA=N. Suppose not nN\exists n\in N, xAx\notin A, take an ideal I={rRnrA}I=\{r\in R|nr\in A\} and h:IEh:I\to E with h:rg(rn)h:r\to g(rn). By assumption, we can extend hh into k:REk:R\to E, with kI=Ek|_{I}=E. Consider φ:A+RnE\varphi:A+Rn\to E with φ:a+rng(a)+g(rn)=g(a)+h(r)\varphi:a+rn\mapsto g(a)+g(rn)=g(a)+h(r), then (A+Rn,φ)(A+Rn,\varphi) is a larger element than (A,g)(A,g) in Σ\Sigma. Contradiction! Thus N=AN=A. ◻

Theorem 3. Let RR be a Noetherian ring. If {Mj}jJ\{M_{j}\}_{j\in J} is a family of injective modules, then jJMj\bigoplus\limits_{j\in J}M_{j} is injective.

Proof

Proof. Only need to show for any ideal IRI\subset R, and f:IjJMjf:I\to \bigoplus\limits_{j\in J}M_{j}, it can be extended to RR. Since RR is Noetherian, II is finite generated. Assume I=(a1,,an)I=(a_{1},\dots, a_{n}), for i=1,,ni=1,\dots, n, f(ai)=(bi,j)jJf(a_{i})=(b_{i,j})_{j\in J}, where bi,j=0b_{i,j}=0 for all but finite jj. Then K={jJf(ai)j0 for some i=1,,n}K=\{j\in J|f(a_{i})_{j}\neq 0 \text{ for some }i=1,\dots, n\} is finite. f(I)jKMjf(I)\subset \bigoplus\limits_{j\in K}M_{j}, jKMj\bigoplus\limits_{j\in K}M_{j} and jKMj\prod\limits_{j\in K}M_{j} agree with each other. So we have gˉ:RjKMj\bar{g}:R\to \bigoplus\limits_{j\in K}M_{j}, and thus g:RjJMjg:R\to \bigoplus\limits_{j\in J}M_{j}. ◻

However, for non Noetherian ring, the direct sum of injective module may not be injective. The theorem is actually if and only if. For any non Noetherian ring RR, there is a strictly increasing chain of ideals: I1I2I_{1}\subsetneq I_{2}\subsetneq\cdots. Let EiE_{i} be the injective envelope of R/IiR /I_{i}, i.e. EiE_{i} is injective, R/IiEiR /I_{i}\subset E_{i} and for any submodule NN of EiE_{i}, R/IiNR /I_{i}\cap N\neq \varnothing. Take E=i=1nEiE=\bigoplus\limits_{i=1}^{n}E_{i}, EE is not injective.

Divisible Module

Definition 2. An RR-module DD is divisible if for every rRr\in R and dDd\in D, bD\exists b\in D s.t. rb=drb=d.

For any integral domain RR, the injective module EE is always divisible: For any rRr\in R and dDd\in D, take f:(r)Ef:(r)\to E with f:xrxdf:xr\mapsto xd. Then extend ff to g:REg:R\to E, thus d=f(r)=rf(1)d=f(r)=rf(1), EE is divisible.

The converse is not true in general. For the integral domain R[x,y]R[x,y] and QQ is the field of fractions, then the RR-module Q/RQ /R is divisible but not injective.

Theorem 4. Let RR be a PID.

1. An RR-module EE is injective if and only if it is divisible.

2. Quotient module of injective module are injective.

Proof

Proof.

  1. Only need to show divisible modules are injective. Let EE be a divisible module, consider any ideal I(0)I\neq (0) with a map f:IEf:I\to E, then I=(a)I=(a) for some aRa\in R. Since EE is divisible, eE\exists e\in E s.t. f(a)=aef(a)=ae. Now consider g:REg:R\to E with g:rreg:r\mapsto re, gg extend ff to RR.

  2. It’s easy to show for the quotient module of divisible module is
    divisible. ◻

Lemma 3. For any injective abelian group DD, HomZ(R,D)\mathrm{Hom}_{\mathbb{Z}}(R,D) is injective RR-module.

Proof

Proof. Let E=HomZ(R,D)E=\mathrm{Hom}_{\mathbb{Z}}(R,D), EE is obviously an RR-module. Only need to show HomZ(,E)\mathrm{Hom}_{\mathbb{Z}}(-,E) is exact. HomZ(,E)HomZ(R,D)\mathrm{Hom}_{\mathbb{Z}}(-,E)\cong \mathrm{Hom}_{\mathbb{Z}}(-\otimes R,D) by adjoint functors. Since for RR-module MM, MRRM\otimes R\cong R, and HomZ(,D)\mathrm{Hom}_{\mathbb{Z}}(-,D) is exact, thus HomZ(,E)\mathrm{Hom}_{\mathbb{Z}}(-,E) is exact. ◻

Theorem 5. Every RR-module MM is a submodule of some injective RR-module.

Proof

Proof. There’s a free abelian group FF and π:FM\pi:F\to M surjective. Since FiIZF\cong \bigoplus\limits_{i\in I}\mathbb{Z}, FF can be embedded into DiIQD\cong \bigoplus\limits_{i\in I}\mathbb{Q}, DD is divisible group.

Take f:DMf:D\to M be the surjective group homomorphism and fˉ:HomZ(R,M)HomZ(R,D)\bar{f}:\mathrm{Hom}_{\mathbb{Z}}(R,M)\to \mathrm{Hom}_{\mathbb{Z}}(R,D). Since every RR-module homomorphism is group homomorphism, HomR(R,M)HomZ(R,A)\mathrm{Hom}_{R}(R,M)\subset \mathrm{Hom}_{\mathbb{Z}}(R,A). Consider the homomorphism g:RHomR(R,M)g:R\to \mathrm{Hom}_{R}(R,M) with g(a):rrag(a):r\mapsto ra, then gg is injective. Then RgHomR(R,M)HomZ(R,M)R\xrightarrow{g}\mathrm{Hom}_{R}(R,M)\to \mathrm{Hom}_{\mathbb{Z}}(R,M) is a way to embed RR into divisible RR-module HomZ(R,M)\mathrm{Hom}_{\mathbb{Z}}(R,M). ◻

Finally, we build the criterion of injective via splitting exact sequence.

Theorem 6. An RR-module II is injective if and only if every short exact sequence

$$0\to I\to B\to C\to 0$$

splits.

Proof

Proof. Assume II is an injective module, consider any short exact sequence, for the diagram

I0IBidIi9g

by injectivity, g:BI\exists g:B\to I s.t. gi=idIg\circ i=id_{I}.

Conversely, suppose every short exact sequence 0IBC00\to I\to B\to C\to 0 splits and consider the diagram

I0ABfi

II can be embedded into some injective RR-module EE via j:IEj: I\to E.

0IjECokerj00\to I\xrightarrow{j}E\to \mathrm{Coker}j\to 0

splits so q:EI\exists q:E\to I s.t. qi=idIq\circ i=id_{I}.

The there exists l:BEl:B\to E s.t. li=jfl\circ i=j\circ f

IE0ABjqfil

Then qli=qjf=fq\circ l\circ i=q\circ j\circ f=f. Thus II is injective. ◻

评论