Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

Flat module 的第一部分内容, 主要是一部分的判别法. Flatness的性质确实十分多, 并且也没有injective 和projective 那么直观. Atiyah 中还有一个很重要的结果是colimit 会保持exact sequence, 并且colimit 可以和Tor进行交换. 这只是flatness 很小的一部分东西.

Flat Module

Definition 1. An RR-module MM is flat if MRM\otimes_{R} - is exact. Moreover, if the functor is faithful, we call MM faithfully flat.

Flatness can be preserved by the direct sum.

Lemma 1. A direct sum M=MλM=\bigoplus M_{\lambda} is flat if and only if MλM_{\lambda} is flat for every λ\lambda. Further, MM is faithfully flat if at least on MλM_{\lambda} is faithfully flat.

Proof

Proof. For f:NNf:N'\to N an injective homomorphism, (Mλ)f=(Mλf)(\bigoplus M_{\lambda})\otimes f= \bigoplus(M_{\lambda}\otimes f). Here (Mλf):MNMN\bigoplus(M_{\lambda}\otimes f): M\otimes N'\to M\otimes N is injective. Thus MM\otimes - preserves injectives if and only if MλM_{\lambda} preserves injectives.

For faithfully flat, MN=((MλN))M\otimes N=\bigoplus ((M_{\lambda}\otimes N)). Thus if MN=0M\otimes N=0, then MλN=0M_{\lambda}\otimes N=0 for all λ\lambda. If at least one MλM_{\lambda} is faithfully flat, then immediately N=0N=0. MM is faithfully flat. ◻

Theorem 1. A nonzero free module is faithfully flat. Projective modules are flat.

Proof

Proof. For free module FΛRF\cong \bigoplus_{\Lambda} R. RR is obviously faithfully flat, so FF is faithfully flat. Since projective modules are direct summands of free modules, they are flat. ◻

Proposition 1. For 0MMM00\to M'\to M\to M''\to 0 an exact sequence of modules. Assume MM'' is flat.

1. 0MNMNMN00\to M'\otimes N\to M\otimes N\to M''\otimes N\to 0 is exact for any module NN.

2. MM is flat if and only if MM' is flat.

Proof

Proof.

  1. For any NN, take the free presentation 0KRΛN00\to K\to R^{\Lambda}\to N\to 0, tensor it with the exact sequence 0MMM00\to M'\to M\to M''\to 0, we have the following commutative diagram.

0M0¬KerfM¬KerfM00¬Kerf00M0¬RnM¬RnM00¬RnM0¬NM¬N00g

Since RΛR^{\Lambda} and MM'' are flat, α\alpha and β\beta are injective. So each rows and columns are exact. Then just apply the snake lemma. 0MNγMN0\to M'\otimes N\xrightarrow{\gamma} M\otimes N is exact. γ\gamma is injective so 0MNMNMN00\to M'\otimes N\to M\otimes N\to M''\otimes N\to 0 is exact.

  1. Assume f:NNf:N'\to N be an injective homomorphism, consider the diagram:

0M0¬N0M¬N0M00¬N000M0¬NM¬NM00¬N0®0®®00

each rows are exact.

Assume MM is flat, then α\alpha is injective, MM' is flat.

Assume MM' is flat, then α\alpha' is injective. By five lemma, α\alpha is injective, MM is flat. ◻

Criterion of Flatness

Now we give some criterion of flatness.

Theorem 2. If every finitely generated submodule of MM is flat, then M is flat.

Proof

Proof. For injective f:ABf:A\to B, we only need to show idMf:MAMBid_{M}\otimes f:M\otimes A\to M\otimes B is injective. For any uKeridMfu\in\mathrm{Ker}id_{M}\otimes f, we construct finite generated submodule NN of MM and vNv\in N s.t. iidA(v)=ui\otimes id_{A}(v)=u, ii is the inclusion map. Assume u=i=1nmiaiu=\sum\limits_{i=1}^{n}m_{i}\otimes a_{i}, (idMf)(u)=i=1nmif(ai)(id_{M}\otimes f)(u)=\sum_{i=1}^{n}m_{i}\otimes f(a_{i}). Let (idMf)(u)(id_{M}\otimes f)(u) be finite linear combination of elements in M×BM\times B, and take all the elements of the MM-coordinate to form the set SS. Let NN be the submodule of MM generated by S{m1,,mn}S\cup\{m_{1},\dots,m_{n}\}, v=i=1nmiaiNAv=\sum\limits_{i=1}^{n}m_{i}\otimes a_{i}\in N\otimes A, then the conditions are satisfied. ◻

Similarly, we can proof the criterion.

Theorem 3. MM is flat if and only if idMf:MNMNid_{M}\otimes f: M\otimes N'\to M\otimes N is injective for any f:NNf:N'\to N injective homomorphism, N,NN', N are finitely generated.

Proof

Proof. Omitted. ◻

Theorem 4 (Lazard). MM is flat if and only if MM is the colimit of direct system of free finite modules.

Proof

Proof. Omiited. ◻

Theorem 5. For an RR-module MM, and if ixiyi=0\sum_{i}x_{i}y_{i}=0 with xiRx_{i}\in R, yiMy_{i}\in M implies there are xijRx_{ij}\in R, yjMy_{j}'\in M s.t. jxijyj=yj\sum_{j}x_{ij}y_{j}'=y_{j} for all ii, any ixijxi=0\sum_{i}x_{ij}x_{i}=0 for all kk. Then MM is flat.

Proof

Proof. Only need to show for any given α:RmM\alpha:R^{m}\to M and kKerαk\in\mathrm{Ker}\alpha, there is φ:RmRn\varphi:R^{m}\to R^{n} s.t. α:RmφRnM\alpha:R^{m}\xrightarrow{\varphi}R^{n}\to M with φ(k)=0\varphi(k)=0. Then MM is filtered direct colimit of free modules with finite rank, by Lazard theorem, MM is flat.

Let k=ixieik=\sum_{i}x_{i}e_{i} {ei}\{e_{i}\} is the basis of RmR^{m}. Define φ:RmRn\varphi:R^{m}\to R^{n} from the matrix (xij)(x_{ij}), then φ(k)=iφ(ei)=ixijxijej\varphi(k)=\sum_{i}\varphi(e_{i})=\sum_{i}x_{i}\sum_{j}x_{ij}e_{j}', {ej}\{e_{j}'\} is the basis of RnR^{n}. Then φ(k)=0\varphi(k)=0 by assumption. Define β:RnM\beta:R^{n}\to M by β(ej)=yj\beta(e_{j}')=y_{j}'. Then β(φ(ej))=β(ixijej)=ixijyj=yj\beta(\varphi(e_{j}))=\beta(\sum_{i} x_{ij}e_{j})=\sum_{i}x_{ij}y_{j}'=y_{j}. Thus βφ=α\beta\varphi=\alpha. ◻

Actually, the result in the above theorem is an if and only if relation.

Lemma 2. Let RR be a ring, MM and NN are RR-modules, and {nλ}λΛ\{n_{\lambda}\}_{\lambda\in\Lambda} is a set of generators of NN. Then any element of MNM\otimes N can be written as a finite sum mλnλ\sum m_{\lambda}\otimes n_{\lambda} with mλMm_{\lambda}\in M. Further, mλnλ=0\sum m_{\lambda}\otimes n_{\lambda}=0 if and only if there are mσMm_{\sigma}\in M and xλσRx_{\lambda \sigma}\in R for σΣ\sigma\in \Sigma for some Σ\Sigma s.t

σxλσmσ=mλ for all λ and λxλσnλ=0 for all σ\sum_{\sigma}x_{\lambda \sigma}m_{\sigma}=m_{\lambda} \text{ for all }\lambda \text{ and } \sum_{\lambda}x_{\lambda \sigma}n_{\lambda}=0 \text{ for all }\sigma

Proof

Proof. MNM\otimes N is generated by the elements of the form mnm\otimes n. If n=xλnλn=\sum x_{\lambda}n_{\lambda} with xλRx_{\lambda}\in R, then mn=(xλm)nλm\otimes n=\sum(x_{\lambda}m)\otimes n_{\lambda}. Thus any element of MNM\otimes N has the form mλnλ\sum m_{\lambda}\otimes n_{\lambda}. Assume mσm_{\sigma} and the xλσx_{\lambda \sigma} exist, then

mλnλ=λ(σxλσmσ)nλ=σ(mσλxλσnλ)=0\sum m_{\lambda}\otimes n_{\lambda}=\sum_{\lambda}(\sum_{\sigma}x_{\lambda \sigma}m_{\sigma})\otimes n_{\lambda}=\sum_{\sigma}(m_{\sigma}\otimes \sum_{\lambda}x_{\lambda \sigma}n_{\lambda})=0

Conversely, take a free presentation RΣβRΛαN0R^{\Sigma}\xrightarrow{\beta}R^{\Lambda}\xrightarrow{\alpha}N\to 0 with α(eλ)=nλ\alpha(e_{\lambda})=n_{\lambda} for all λ\lambda, where {eλ}\{e_{\lambda}\} is the basis of RΛR^{\Lambda}. Then the sequence MRΣMRΛMN0M\otimes R^{\Sigma}\to M\otimes R^{\Lambda} \to M\otimes N\to 0 is exact. idMα(mλeλ)=0id_{M}\otimes \alpha(\sum m_{\lambda} \otimes e_{\lambda})=0, so the exactness implies there’s sMRΣs\in M\otimes R^{\Sigma} s.t. (1β)(s)=mλeλ(1\otimes \beta)(s)=\sum m_{\lambda}\otimes e_{\lambda}. Let {eσ}\{e_{\sigma}\} be the basis of RΣR^{\Sigma} and s=mσeσs=\sum m_{\sigma}\otimes e_{\sigma} with mσMm_{\sigma}\in M. Write β(eσ)=λxλσeλ\beta(e_{\sigma})=\sum_{\lambda}x_{\lambda \sigma}e_{\lambda}. Then λxλσnλ=α(β(eσ))=0\sum_{\lambda}x_{\lambda \sigma}n_{\lambda}=\alpha(\beta(e_{\sigma}))=0 and

0=λmλeλσmσ(λxλσeλ)=λ(mλσxλσmσ)eλ0=\sum_{\lambda}m_{\lambda}\otimes e_{\lambda}-\sum_{\sigma}m_{\sigma}\otimes(\sum_{\lambda}x_{\lambda\sigma}e_{\lambda})=\sum_{\lambda}(m_{\lambda}-\sum_{\sigma}x_{\lambda\sigma}m_{\sigma})\otimes e_{\lambda}

Since eλe_{\lambda} are independent, mλ=σxλσmσm_{\lambda}=\sum_{\sigma}x_{\lambda \sigma}m_{\sigma}. ◻

Finally, we give the ideal criterion of flatness.

Theorem 6. An RR-module NN is flat if and only if for every finite generated ideal a\mathfrak{a}, the natural map aNaN\mathfrak{a}\otimes N\to \mathfrak{a}N is an isomorphism.

Proof

Proof. Assume NN is flat. We know RNNR\otimes N\to N is an isomorphism, NN is flat so injective homomorphism aR\mathfrak{a}\to R induces aNRN=N\mathfrak{a}\otimes N\to R\otimes N=N. So aNaN\mathfrak{a}\otimes N\to \mathfrak{a}N is injective thus an isomorphism.

Conversely, given any i=1nxiyi=0\sum\limits_{i=1}^{n}x_{i}y_{i}=0 with xiRx_{i}\in R, yiNy_{i}\in N. Take a=(x1,,xn)\mathfrak{a}=(x_{1},\dots, x_{n}). If aNaN\mathfrak{a}\otimes N\cong \mathfrak{a}N, then ixiyi=0\sum_{i}x_{i}\otimes y_{i}=0, by lemma above, we have σxλσmσ=mλ\sum_{\sigma}x_{\lambda \sigma}m_{\sigma}=m_{\lambda} for all λ\lambda and λxλσnλ=0\sum_{\lambda}x_{\lambda \sigma}n_{\lambda}=0 for all σ\sigma. Thus NN is flat. ◻

Theorem 7. Let RR be a ring and MM be a module. Then the following conditions are equivalent:

1. MM is flat.

2. Given a finitely presented module PP, then there is a canonical homomorphism θ:HomR(P,R)RMHomR(P,M)\theta: \mathrm{Hom}_{R}(P,R)\otimes_{R} M\to \mathrm{Hom}_{R}(P,M) and θ\theta is surjective.

3. Given a finite presented module PP and a map β:PM\beta:P\to M, there is a factorization β:PγPnαM\beta: P\xrightarrow{\gamma} P^{n}\xrightarrow{\alpha}M.

4. Given an α:RmM\alpha:R^{m}\to M and a kKerαk\in\mathrm{Ker}\alpha, there exists a factorization α:RmφRnM\alpha: R^{m}\xrightarrow{\varphi}R^{n}\to M such that φ(k)=0\varphi(k)=0.

5. Given an α:RmM\alpha:R^{m}\to M and k1,,krKerαk_{1},\dots, k_{r}\in\mathrm{Ker}\alpha, there exists a factorization α:RmφRnM\alpha:R^{m}\xrightarrow{\varphi}R^{n}\to M such that φ(ki)=0\varphi(k_{i})=0 for i=1,,ri=1,\dots, r.

6. Given RrρRmαMR^{r}\xrightarrow{\rho}R^{m}\xrightarrow{\alpha}M such that αρ=0\alpha \rho=0, there exists a factorization α:RmφRnM\alpha: R^{m}\xrightarrow{\varphi}R^{n}\to M such that φρ=0\varphi \rho=0.

7. Let ΛM\Lambda_{M} be the category whose objects are the pairs (Rm,α)(R^{m},\alpha), where α:RmM\alpha:R^{m}\to M is a homomorphism. The morphisms are the homomorphisms φ:RmRn\varphi:R^{m}\to R^{n} with βφ=α\beta \varphi=\alpha. Then ΛM\Lambda_{M} is filtered.

8. MM is a filtered direct limit of free modules of finite rank.

Proof

Proof. Omitted. ◻

评论