Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

Faithfully flat module 简单理解就是将tensor 前的序列的正合性等价于tensor 后序列的正合性. 比较好的判别法有: tensor非零module 后依旧非零. 在代数几何里面faithfully flatness 可以用来构造平坦下降~~(虽然我不会)~~

Faithfully Flatness

Definition 1. An RR-module MM is faithfully flat if MM\otimes - is exact and faithful.

Lemma 1. MM is faithfully flat if and only if 0NNN00\to N'\to N\to N''\to 0 exact 0NMNMNM0\Leftrightarrow 0\to N'\otimes M\to N\otimes M\to N''\otimes M\to 0 exact.

Proof

Proof. If MM is faithfully flat. Then 0NNN00\to N'\to N\to N''\to 0 exact implies 0NMNMNM0\Leftrightarrow 0\to N'\otimes M\to N\otimes M\to N''\otimes M\to 0 exact.

Consider 0NMfˉNMgˉNM00\to N'\otimes M\xrightarrow{\bar{f}} N\otimes M\xrightarrow{\bar{g}} N''\otimes M\to 0, there are f:NNf:N'\to N and g:NNg:N\to N'' s.t. fidM=fˉf\otimes id_{M}=\bar{f}, gidM=gˉg\otimes id_{M}=\bar{g}. Since functor M-\otimes M commutes with composition, ff injective and gg surjective, gf=0g\circ f=0. So 0NfNgN00\to N'\xrightarrow{f}N\xrightarrow{g}N''\to 0 is exact.

Conversely, we can immediately have MM flat. We only need to show 0Hom(NM,NM)=fM0_{\mathrm{Hom}(N'\otimes M, N\otimes M)}=f\otimes M implies f=0Hom(N,N)f=0_{\mathrm{Hom}(N',N)}.

Since

0KerfNN00\to \mathrm{Ker}f\to N'\to N\to 0

exact, by flatness,

0KerfMNMNM00\to \mathrm{Ker}f\otimes M\to N'\otimes M\to N\otimes M\to 0

exact. Thus KerfMNM\mathrm{Ker}f\otimes M\cong N'\otimes M. Let i:KerfNi:\mathrm{Ker}f\to N' be the inclusion map, then 0KerfMiMCokeriM00\to \mathrm{Ker}f\otimes M\xrightarrow{i\otimes M} \mathrm{Coker}i\otimes M\to 0 is exact. Since tensor preserves cokernels, CokeriM=Coker(iM)=0Cokeri=0\mathrm{Coker}i\otimes M=\mathrm{Coker}(i\otimes M)=0\Rightarrow \mathrm{Coker}i=0. So f=0Hom(N,N)f=0_{\mathrm{Hom}(N',N)}. ◻

Theorem 1. Let RR be a ring and MM is an RR-module, the followings are equivalent.

1. MM is faithfully flat.

2. MM is flat, and for any RR-module N0N\neq 0, we have NM0N\otimes M\neq 0.

3. MM is flat, for any maximal ideal m\mathfrak{m} of RR, mMM\mathfrak{m}M\neq M.

Proof

Proof. 1 \Rightarrow 2: Suppose NM=0N\otimes M=0, since 0NM00\to N\otimes M\to 0 exact, 0N00\to N\to 0 exact. So N=0N=0.

2 \Rightarrow 3: M/mM(R/m)MM /\mathfrak{m}M\cong (R /\mathfrak{m})\otimes M. Since R/m0R /\mathfrak{m}\neq 0, M/mM0M /\mathfrak{m}M\neq 0.

3 \Rightarrow 2: Take xNx\in N, x0x\neq 0. Then RxR/Ann(x)Rx\cong R /Ann(x). Let m\mathfrak{m} be the maximal ideal containing Ann(x)Ann(x), then Ann(x)MmMMAnn(x)M\subset \mathfrak{m}M\subset M. Thus (R/Ann(x))MM/Ann(x)M0(R /Ann(x))\otimes M\cong M /Ann(x) M\neq 0. Since MM is flat, 0(R/Ann(x))MNM00\to (R /Ann(x))\otimes M\to N\otimes M\to 0 is exact. Thus NM0N\otimes M\neq 0.

2 \Rightarrow 1: For any fM=0Hom(NM,NM)f\otimes M=0_{\mathrm{Hom}(N'\otimes M, N\otimes M)}, we need to show f=0Hom(N,N)f=0_{\mathrm{Hom}(N',N)}. Take i:KerfNi:\mathrm{Ker}f\to N' and apply similar arguments as lemma. ◻

Corollary 1. Let R,RR, R' be local rings, φ:RR\varphi:R\to R' be a local homomorphism. Let M0M\neq 0 be a finite generated RR' module, then MM is flat over RR if and only if MM is faithfully flat over RR.

Proof

Proof. Let m,n\mathfrak{m}, \mathfrak{n} be the maximal ideals of RR and RR' respectively. Then φ(m)n\varphi(\mathfrak{m})\subset\mathfrak{n} by the definition of local homomorphism. Then mMnM\mathfrak{m}M \subset\mathfrak{n}M, by Nakayama lemma, nMM\mathfrak{n}M\neq M. Thus mMM\mathfrak{m}M\neq M. Then apply the previous theorem. ◻

Faithfully flat has the descent property:

Theorem 2. If RR' is an RR algebra and if MM is faithfully flat RR'-module and also faithfully over RR, then RR' is faithfully flat over RR.

Proof

Proof. For any exact RR-module sequence 0NNN00\to N'\to N\to N''\to 0. MM is faithfully flat RR-module, so the exactness above is equivalent to the exactness of 0NRMNRMNRM00\to N'\otimes_{R}M\to N\otimes_{R}M\to N''\otimes_{R}M\to 0. Thus its equivalent to the exactness of 0(NRR)RM(NRR)RM(NRR)RM00\to (N'\otimes_{R}R')\otimes_{R'} M\to (N\otimes_{R} R')\otimes_{R'}M\to (N''\otimes_{R}R')\otimes_{R'}M\to 0. Since MM is faithfully flat RR' module, the exactness is equivalent to the exactness of 0NRRNRRNRR00\to N'\otimes_{R}R'\to N\otimes_{R}R'\to N''\otimes_{R}R'\to 0. Thus RR' is faithfully flat over RR. ◻

Similarly, if we give the weaker condition: MM is flat over RR' and faithfully flat over RR, we can have RR' is flat over RR.

For RR' be an RR algebra, we have the following theorem:

Theorem 3. The followings are equivalent:

1. RR' is faithfully flat over RR.

2. For every RR-module MM, the map α:MMRR\alpha:M\to M\otimes_{R}R' given by α:mm1R\alpha:m\mapsto m\otimes 1_{R'} is injective.

3. Every ideal a\mathfrak{a} of RR satisfies aec=a\mathfrak{a}^{ec}=\mathfrak{a} or equivalently, (aR)c=a(\mathfrak{a}R')^{c}=\mathfrak{a}.

4. Every prime ideal p\mathfrak{p} is contraction of some prime ideal q\mathfrak{q} of RR'. This is equivalent to f:Spec(R)Spec(R)f^{*}:Spec(R')\to Spec(R) is surjective.

5. Every maximal ideal extend to a proper ideal, or equivalently, mRR\mathfrak{m}R'\neq R'.

6. Every nonzero RR-module MM extends to a nonzero module, i.e. MRR0M\otimes_{R}R'\neq 0.

Proof

Proof. 1 \Rightarrow 2: Consider the exact sequence

0KerαRRMRRαRidRMRRRR0\to \mathrm{Ker}\alpha\otimes_{R}R'\to M\otimes_{R}R'\xrightarrow{\alpha\otimes_{R}id_{R'}}M\otimes_{R}R'\otimes_{R}R'

αidR:mxymxy\alpha\otimes id_{R'}:m\otimes x\otimes y\mapsto m\otimes xy is injective, so Ker(αRidR)=KerαRR=0\mathrm{Ker}(\alpha\otimes_{R} id_{R'})=\mathrm{Ker}\alpha\otimes_{R}R'=0. Thus Kerα=0\mathrm{Ker}\alpha=0, α\alpha is injective.

2 \Rightarrow 3: By assumption, R/aR/aR=R/aRR /\mathfrak{a}\to R /\mathfrak{a}\otimes R'=R' /\mathfrak{a}R' is injective. aR=ae\mathfrak{a}R=\mathfrak{a}^{e}. So xae\forall x\in \mathfrak{a}^{e}, there is yay\in \mathfrak{a} s.t. f(y)=xf(y)=x where f:RRf:R\to R'. So f1(x)af^{-1}(x)\in\mathfrak{a}, aeca\mathfrak{a}^{ec}\subset\mathfrak{a},
aec=a\mathfrak{a}^{ec}=\mathfrak{a}.

3 \Rightarrow 4: Take S=f(Rp)S=f(R-\mathfrak{p}), then SS is multiplicative closed. peS=\mathfrak{p}^{e}\cap S=\varnothing since pec=p\mathfrak{p}^{ec}=\mathfrak{p}. Take Σ={bbpe,bS=}\Sigma=\{\mathfrak{b}|\mathfrak{b}\supset \mathfrak{p}^{e}, \mathfrak{b}\cap S=\varnothing\}. By Zorn’s lemma, Σ\Sigma has a maximal element q\mathfrak{q}. It’s easy to show q\mathfrak{q} is prime. f1(q)pf^{-1}(\mathfrak{q})\supset \mathfrak{p}, f1(q)(Rp)=f^{-1}(\mathfrak{q})\cap (R-\mathfrak{p})=\varnothing, then qc=p\mathfrak{q}^{c}=p.

4 \Rightarrow 5: m=qc\mathfrak{m}=\mathfrak{q}^{c} for some prime q\mathfrak{q} in RR', then mRqR\mathfrak{m}R'\subset\mathfrak{q}\neq R'.

5 \Rightarrow 6: Take mM,m0m\in M, m\neq 0. Let M=RmM'=Rm, thus i:MMi:M'\to M will give injective iidR:MRMRi\otimes id_{R'}:M'\otimes R'\to M\otimes R'. If MR=0M\otimes R'=0, we have MR=0M'\otimes R'=0. Since MR/Ann(m)M'\cong R /Ann(m), we have R/Ann(m)R=0R' /Ann(m)R'=0. Take m\mathfrak{m} be the a maximal ideal containing Ann(m)Ann(m), then Ann(m)RmRRAnn(m)R'\subset \mathfrak{m}R'\subsetneq R'. Contradiction!

6 \Rightarrow 1: Already done. ◻

评论