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Math 256B. Solutions to Homework 1

(10 points) Hartshorne IT Ex. 1.20: Subsheaf with Supports. Let Z be a closed subset of
X, and let .# be a sheaf on X . We define I'z(X,.%#) to be the subgroup of I'(X,.%)
consisting of all sections whose support (Ex. 1.14) is contained in Z .

(a). Show that the presheaf V FZQV(V,ﬁ‘V) is a sheaf. It is called the
subsheaf of .# with supports in Z, and is denoted 2 (.7).

(b). Let U=X —Z, and let j: U — X be the inclusion. Show that there is an
exact sequence of sheaves on X

0= HYF) = F = j(F|) -
Furthermore if .# is flasque, the map % — j, (9 ‘U) is surjective.

(a). The identity axiom ((3) on page 61) is immediate from the fact that the presheaf
in question is by definition a subpresheaf of the sheaf . .

For the gluing axiom (4), let U be an open subset of X, let {V;} be an open
covering of U, and for each i let s; € I'zny; (V;,ﬁ’v) be sections that agree on
ViNV; for all 4,j. They are also sections of .# , so they can be glued to give a section
s € Z#(U) such that S‘Vi =s; for all ¢. By definition sp =0 forall P U\ Z, so in

fact s isin I‘ZQU(U,L?‘U). Thus 2 (.7) is a sheaf.

(b). By construction, 2 (.7) is a subsheaf of .Z , so we let the map (%) — F
be the inclusion map (which is injective).

To construct the map f: .F — j*(,?}U), first note that j*(9|U) is the sheaf
Vs Z(UNV). Then B is just given by restriction:

F(V) = FZUNV)=j(F],)(V), (*)

and is a morphism of sheaves by presheaf axiom (2).

Now the sequence is exact because the kernel of the above map is exactly those
sections s € (V) whose stalks sp vanish at all P ¢ Z; by definition this is
Corv (V, Z|,) = A9(F)(V).

Finally, if .# is flasque, then it is clear from (*) that S is surjective as a presheaf
map, hence as a sheaf map.

(10 points) Carefully prove the following lemma (from class on Wednesday, 24 January):

Lemma. Let &/ and 9 be abelian categories, let
0—=1I'—=I—=1"—0
be an exact sequence in & , where I' , I, and I" are injective, and let F: of — 5B

be a left exact, covariant functor.
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Then the sequence
0—FI')—FI)—FI")—0

is also exact

In proving this, you may use (without proof) properties of abelian categories men-
tioned in Hartshorne’s definition of abelian category, my definition of abelian category
from class (originally from Wikipedia, but with additional information), or any other
property of abelian categories mentioned in class prior to the time when the above
lemma was stated in class. However, do not use Freyd’s Embedding Theorem or any
result depending on that theorem.

First, we show that if ¢: A — B is an isomorphism, then it is both monomorphic
and epimorphic. Indeed, for all objects X , composition with ¢ induces bijections
Hom(X,A) — Hom(X, B) and Hom(B,X) — Hom(A, X). Therefore both of these
maps are injective, so ¢ is both monomorphic and epimorphic.

Since F' is left exact, the sequence 0 — F(I') — F(I) — F(I") is exact, so it
remains only to show that F(I) — F(I") — 0 is exact.

As noted in class, the above short exact sequence splits, so there isamap ¢: [ — I
such that po¢ = 17+, where p: I — I" is the second map in the short exact sequence.
Applying the functor F', we then have that F(p) o F(i) = F(1;+) = 1p(ny .

Next, we note that if ¢: A — B and ¢: B — C are maps such that ¢ o ¢ is
epimorphic, then 1 is epimorphic. Indeed, for all X , composition with ¢ and with ¢
induce maps

Hom(C, X) — Hom(B, X) and Hom(B, X) — Hom(A4, X) , (1)

respectively, and the composition of these two maps is given by composition with @Yo¢.
Now since v o ¢ is epimorphic, the composition of the maps (1) is injective; therefore
the first of the maps (1) is injective; hence 1 is epimorphic.

Now since 1p ;) is an isomorphism, it is epimorphic; hence F'(p): F(I) — F(I")
is epimorphic.

Then exactness of F(I) — F(I") — 0 then follows immediately from the following
claim.

If ¢: A — B is an epimorphism, then A % B =5 0 is exact. Indeed, the map
B — 0 is also epimorphic, since Hom(0, X) has only one element for all X . There-
fore the factorizations of both maps into epimorphisms followed by monomorphisms
are given by ¢ = lpo¢ and B — 0 = 1g o (B — 0), respectively (since the iso-
morphisms 1p and 1p are monomorphic, as noted above). So it suffices to show that
ker(B — 0) = 1p . This is true because (B — 0) o 1p is the zero map, and all maps
to B factor uniquely through 1p.
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(10 points) Let X be a noetherian topological space, and let % be a subsheaf of the
constant sheaf Z on X . Show that .# is finitely generated; i.e., that there are open
subsets Uy, ...,U, of X and sections s; € .% (U;) for all i such that no proper subsheaf
of .# contains all of these sections. [Hint: Consider the sets {P € X :i € Fp} for
i€Z.]

Let & denote the constant sheaf Z on X . Note that Zp =7Z for all P € X .

Following the hint, for each i € Z let U; = {P € X : Fp > i}. This is an open set,
because if P € U; then i € %p is represented by a pair (V,s), consisting of an open
neighborhood V of P in X and a section s € .#(V) with sp = ¢. After replacing
V with the open subset s~1(i) C V, we may assume that s is the constant function
i on V. Then V C U;. This implies that U; is open.

Since X 1is noetherian, any nonempty collection of closed subsets of X has a
minimal element (otherwise one could construct an infinite descending sequence of
closed subsets). Therefore, any nonempty collection of open subsets of X has a maximal
element. In particular, the set {U; : i € Zso} has a maximal element U, . Note that
if i |j then U; C Uj;, so this maximal element is actually a largest element.

We claim that the sections 1 € .#(Uy),...,m € .#(U,,) generate .# . Indeed, let
0+# j € Zp for some P. This germ is represented by a constant function j on some
open subset V' containing P. We have V C U; C Uy, , so m is a section of .% on V,
and therefore j is a multiple of the section ged(j,m) on V', which is in .% because
V€ Ugeagjm) -



