
Math 256B. Solutions to Homework 10

1. (10 points) Let X be an integral scheme, let L be a line sheaf on X , let s be a
nonzero rational section of L , and let D = (s) . Show that OX(D) ∼= L .

Let {Ui} be a covering of X by nonempty open subsets such that there are

isomorphisms φi : L
∣∣
Ui

∼→ OUi for all i . Then the collection {(Ui, fi)} represents

D , where fi = φi(s) for all i . These are related on intersections Ui ∩ Uj by
φi
∣∣
Ui∩Uj

= (φi(s)/φj(s))φj
∣∣
Ui∩Uj

= (fi/fj)φj
∣∣
Ui∩Uj

(to see this, compare their val-

ues on the rational section s ).
The line sheaf O(D) ⊆ K is defined by O(D)

∣∣
Ui

= f−1i OUi
, so we have isomor-

phisms ψi : OUi

∼→ O(D)
∣∣
Ui

, defined by 1 7→ f−1i , for all i . These are related on

intersections Ui ∩Uj by ψi

∣∣
Ui∩Uj

= (fj/fi)ψj

∣∣
Ui∩Uj

(to see this, compare their values

on the rational section 1D ).

We then have isomorphisms ψi◦φi : L
∣∣
Ui

∼→ O(D)
∣∣
Ui

for all i . They are related on

intersections Ui∩Uj by (ψi◦φi)
∣∣
Ui∩Uj

= (fj/fi)(fi/fj)(ψj◦φj)
∣∣
Ui∩Uj

= (ψj◦φj)
∣∣
Ui∩Uj

,

so they glue to give a well-defined isomorphism L
∼→ O(D) .

2. (15 points) Hartshorne II Ex. 6.6. You may ignore the last sentence of (d).
However, note that the definition of the group law on X comes from the group

operation on Cl0X and the bijection Cl0X → X (and not from the line-and-chord
operation). Also, make it clear whether you are adding divisors or using the group
operation on X.

Let X be the nonsingular plane curve y2z = x3 − xz2 of (6.10.2).

(a). Show that three points P,Q,R are collinear if and only if P +Q+R = 0 in
the group law on X . (Note that the point P0 = (0, 1, 0) is the zero element
of the group structure on X .)

(b). A point P ∈ X has order 2 in the group law on X if and only if the tangent
line at P passes through P0 .

(c). A point P ∈ X has order 3 in the group law on X if and only if P is an
inflection point. (An inflection point of a plane curve is a nonsingular point
P of the curve, whose tangent line (I, Ex. 7.3) has intersection multiplicity
≥ 3 with the curve at P .)

(d). Let k = C . Show that the points of X with coordinates in Q form a
subgroup of the group X . Can you determine the structure of this subgroup
explicitly?

(a). First assume that P , Q , and R are collinear, let L be the line containing them,
and let ax+ by+ cz be an element of k[x, y, z] whose vanishing determines L . In the
notation of Ex. 6.2a, think of L as a divisor on P2 , and write L.X = n1P+n2Q+n3R .
Then n1 , n2 , and n3 are positive integers, and their sum is 3 by Ex. 6.2c (since
degX = 3 ). Therefore n1 = n2 = n3 = 1 , and we have L . X = P + Q + R . Also, if
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L′ is the line z = 0 , then it meets X only at the point P0 , so again by Ex. 6.2c we
have L′ .X = 3P0 . It then follows that the principal divisor ((ax+ by + cz)/z) is(

ax+ by + cz

z

)
= P +Q+R− 3P0 = (P − P0) + (Q− P0) + (R− P0) ,

so that P +Q+R = 0 in the group law.
This also makes sense if P , Q , and R are not distinct, provided that appropriate

multiplicities are used when saying that P , Q , and R are collinear (Ex. 6.2c), so that
L .X = P +Q+R .

Conversely, let P +Q+R = 0 in the group law, and let L be the line joining P
and Q . (Or, let L be the tangent line to P if P = Q .) Let R′ be the other point
where L meets X ; then by the above, P + Q + R′ = 0 in the group law. Since also
P + Q + R = 0 , we have R = R′ . Again, this also makes sense if P , Q , and R are
not distinct, if we use the appropriate convention on multiplicities.

(b). We have 2P = 0 in the group law if and only if P +P +P0 = 0 in the group law;
by (a) and (I Ex. 7.3) this holds if and only if the tangent line at P passes through
P0 .

(c). We have 3P = 0 in the group law if and only if P + P + P = 0 in the group
law; by (a) and Bézout’s theorem this holds if and only if the tangent line at P has
multiplicity ≥ 3 at P ; i.e., if and only if P , P , and P are collinear.

(d). If P and Q have rational coordinates, then so does the additional point R on
the line PQ . Indeed, this is obvious if the line is vertical; otherwise, by the point-slope
formula, the slope and y-intercept of the line are rational. Plugging the equation for
this line into the equation for X gives a cubic equation in x with rational coefficients.
Since two of the roots of this cubic are rational, the third must also be rational and
therefore so is the y-coordinate of the third point. Then we form P +Q by taking R
and changing the sign of its y coordinate.

(By the Mordell-Weil theorem, this subgroup is a finitely generated abelian group.)

3(nc). (15 points) Let X be a variety over an algebraically closed field k , and let U = SpecA
be a nonempty open affine subset of X .

(a). Let P ∈ X be a point not in U . Show that there is a function f ∈ A that
does not extend to a regular function at P (i.e., f /∈ OX,P ). Moreover, f
can be chosen from any given generating set for A over k .

[Hint: Hartshorne II Ex. 4.2 or Vakil 2023 11.4.A (=Vakil 2017 10.2.A)
may be useful (and may be used without proof). But if you use one of them,
say which one you are using and how you are using it.]

(b). Assume now that X is a nonsingular curve (not necessarily projective).
Choose a closed embedding i : U → An

k over k for some n , let V be the
corresponding closed subscheme of An

k , and let Y be the closure of V in
Pn
k (with reduced induced subscheme structure). (Here we regard An

k as the
open subscheme D+(x0) of Pn

k in the usual way.) As was noted in class,
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the map i : U → V extends uniquely to a morphism j : X → Y . Show that
j−1(V ) = U (or equivalently, j−1(Y \ V ) = X \ U ).

(a). It suffices to prove the last assertion (involving the generating set). We will show
the contrapositive; i.e., if every element of some given generating set for A over k
extends to a regular function at P , then P ∈ U .

Let Σ be a generating set for A over k (it doesn’t need to be finite). Assume that
f ∈ OX,P for all f ∈ Σ , or in other words, Σ ⊆ OX,P . This implies that A ⊆ OX,P

since A and OX,P are k-subalgebras of the function field K(X) (this is true because
X is integral).

By Hartshorne II Ex. 3.3(c) or Vakil 5.3.3 and 7.3.12, A is of finite type over k .
Let y1, . . . , yn be a finite generating set for A over k . We may assume that this is
a subset of Σ (this is true because each yi can be written using a finite number of
elements of Σ ). Each yi extends to a regular function over an open neighborhood of
P in X , so there is an open neighborhood V of P in X such that A ⊆ O(V ) (as
k-subalgebras of K(X) ). We may assume that V is affine, say V = SpecB . Then
A ⊆ B ; let φ : V → U be the morphism corresponding to the inclusion map A ↪→ B .

Since A ↪→ B induces the identity map on K(X) , φ equals the identity on X
as a rational map X 99K X , so there is a nonempty open subset W of X such that
W ⊆ V and φ

∣∣
W

is the identity map on W . By Hartshorne II Ex. 4.2 or Vakil 11.4.A,

φ is the identity on V (this uses the fact that X is separated and reduced). Therefore
P = φ(P ) ∈ SpecA , as was to be shown.

This is easier using Vakil’s stronger result 11.4.A, as follows. Again, A ⊆ OX,P .
Define a map f : Spec OX,P → X as a composite Spec OX,P → SpecB → X , where
SpecB is an open affine in X containing P , and define g : Spec OX,P → X by
Spec OX,P → SpecA → X , using A ↪→ OX,P . Let µ : SpecK(X) → Spec OX,P be
the natural map corresponding to OX,P ↪→ K(X) ; then (in the language of Vakil
11.4.A) f and g agree on µ . Therefore, by Vakil 11.4.A (since X is separated), there
is a closed subscheme i : V ↪→ Spec OX,P such that µ factors through i , and such that
f and g agree on i . Therefore V contains the generic point of Spec OX,P , so since
OX,P is reduced, V = Spec OX,P , so f = g . This implies P ∈ SpecA .

(b). We already know that j(U) ⊆ V , so it remains only to show that j(x) /∈ V for
all x ∈ X \ U .

Let x ∈ X \ U , and suppose j(x) ∈ V . By part (a), there is an element f ∈ A
such that f /∈ OX,x . In particular, A * OX,x .

On the other hand, j−1(V ) is an open subset of X and it contains x , so there
is an open affine neighborhood W = SpecB of x in j−1(V ) . Since i : U → V is an
isomorphism, the map W → V corresponds to a ring homomorphism φ : A→ B over
k . Moreover, φ induces the identity map on K(X) . Therefore A ⊆ B . But OX,x

is a localization of B ; therefore B ⊆ OX,x . Combining these, we have A ⊆ OX,x , a
contradiction.
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4(nc). (10 points) Hartshorne III Ex. 6.3: Let X be a noetherian scheme, and let F ,G ∈
Mod(X) .

(a). If F ,G are both coherent, then Exti(F ,G ) is coherent, for all i ≥ 0 .

(b). If F is coherent and G is quasi-coherent, then Exti(F ,G ) is quasi-coherent,
for all i ≥ 0 .

We start with an easy lemma.

Lemma. Let X be an scheme, let G be a sheaf of OX -modules, and let n ∈ N . Then

Hom(On
X ,G ) ∼= G n .

In particular, if G is quasi-coherent or coherent, then Hom(On
X ,G ) has the same

property.

Proof. By Prop. 6.3a,

Hom(On
X ,G ) ∼= Hom(OX ,G )n ∼= G n . �

By Prop. 6.2, we may assume that X is affine, say X = SpecA . Let M be an

A-module such that F ∼= M̃ . Since F is coherent, M is finitely generated, so there is

a left resolution L· −→M of M in which each Li is free of finite rank. Then L̃· −→ F
is a left resolution of F by free coherent sheaves. By Prop. 6.5,

Exti(F ,G ) ∼= hi(Hom(L̃·,G )) .

Thus:

(a). Exti(F ,G ) is quasi-coherent because it is the cohomology sheaf of a complex
of quasi-coherent sheaves (by the lemma), and

(b). Exti(F ,G ) is coherent because it is the cohomology sheaf of a complex of
coherent sheaves.


