Math 256B. Solutions to Homework 11

(15 points) Hartshorne III Ex. 6.5: Let X be a noetherian scheme, and assume that
Coh(X) has enough locally frees (Ex. 6.4). Then for any coherent sheaf .# we define
the homological dimension of % , denoted hd(%#), to be the least length of a locally
free resolution of .%# (or +oo if there is no finite one). Show:

(a). Z islocally free <= Ext' (F,9) =0 for all ¥ € Mod(X);
(b). hd(#) <n <= &ut'(F,9)=0 forall i >n and all ¥ € Mod(X);
(¢). hd(F) =sup,pdg, , Fu.

Claim. If x € X and N is a module over the local ring Ox ., then there exists a
sheaf ¢ of Ox-modules such that ¢4, = N .

Proof. Take a skyscraper sheaf. O

(a). If .Z islocally free, then &xt' (F, %) = 0 for all ¢ ; this follows from Prop. 6.5
using the locally free resolution 0 — .# — .% — 0. Conversely, if &zt'(F,9) =0 for
all ¢, then Extlﬁxyc(ﬂx,%x) =0 for all z € X and all ¢4 € Mod(X) by Prop. 6.8;
hence (by the claim and Prop. 6.10Aa) .#, is a projective Ox ,-module. Therefore
F is a free Ox z-module by Eisenbud Thm. A.3.2, so .# is locally free by Ex. II 5.7b.

(b). (We may assume n < oo.) If hd(.#) < n then .# has a locally free
resolution of length < n; using that resolution to compute éaxti(f ,9), we see that
Ext'(F,9) =0 for all i >n.

We show the converse statement by induction on n. Suppose &zt'(F,%) =0 for
all © >n and all 4. If n =0, then (a) implies that .# is locally free, so it has a
locally free resolution of length 0;ie., 0 - .% —.% — 0. Thus hd(%#) <0.

Now suppose n > 0. Let &, be a locally free sheaf mapping onto % , and let ¢
be the kernel:

00— — & —F —0.

Then we have exact sequences
Ext' (&, 9G) — Ext' (A G) — Ext' (F,9) — Ext'(E,9)

forall ¢ >n. If i >n >0, then ¢ > 2, so the first and last terms are zero. Thus
Ext' N A, G) = Ext'(F,9), so Ext'(H,9) = 0 for all i > n — 1. By induction,
hd(.#") <n —1, so tacking an &y onto the end of a suitable locally free resolution of
A gives a locally free resolution of .# showing that hd(.%#) <n.

(c). By part (b), the claim, and Prop. 6.10Ab, we have

hd(.#) = sup{i € N : &zt (F,94) # 0 for some ¥}
=sup{i € N: Extiﬁx)w(ﬁw,%c) # 0 for some ¢ and some = € X}

=sup{i € N: Ext?ﬁx’z(fz, N) # 0 for some = € X and some N}

= sup pdg, Gy .
zeX



2(NC).

2

(10 points) Hartshorne III Ex. 6.7: Let X = Spec A be an affine noetherian scheme.
Let M and N be A-modules, with M finitely generated. Then

Ext% (M, N) = Ext’, (M, N)

and S ‘
Sty (M, N) = Ext’y (M, N)~ .

For the first part, first note that, since A is noetherian, the category of finitely-
generated A-modules (call it 9toeth(A) ) is an abelian category.
By II Cor. 5.5 and III Prop. 6.4, the contravariant functors 9toeth(A) — 2Ab given
by
M — Exty(M,N) and M — Ext (M, N)

are J-functors, and coincide when ¢ =0 by II Cor. 5.5.
For any n € N and ¢ > 0, we have

Exty (A", N) = Exty (A, N)" = H/(X,N) =0
by Prop. 6.3c and Theorem 3.5, and we also have
Ext’y (A", N) = Ext’y (4, N)" =0
because the (covariant) functor Hom(A,-) is the identity functor, hence is exact.
Since every finitely-generated A-module M admits a surjection from A™ for some
n, these d-functors are coeffaceable. By Theorem 1.3A they therefore coincide for all

1. This shows the first half of the problem.
For the second half, we first show:

Lemma. If M is a finitely-generated A-module and N is any A-module, then

Homx (M, N) = Homu (M, N).

Proof. Since I'(X, %”omX(M, N)) = HomX(M, N) = Hom4 (M, N) by II Cor. 5.5, the
identity map Hom 4 (M, N) — Homy4 (M, N) gives a map of sheaves,

Hom (M, NY — Homx (M, N)
by II Ex. 5.3. By Prop. 6.8, we have for all p € Spec A = X that
(Hom (M, NY), = (Homu (M, N)), = Homa, (M, Np) = #omx (M, N),

so the above map is an isomorphism. O



Now let
oo —> L1 —>Log— M —0

be an exact sequence with L; = A™ for all ¢ € N. This gives a locally free resolution
of M (viewing this sequence as consisting of modules over the single-point ringed space
associated to A). Thus, by Prop. 6.5,

Ext’ (M, N) = hi(Homy (L., N)) .
Similarly, L. >M—0isa locally free resolution of M on X , SO

&xts, (M, N) = h*(Homx (L., N)) = h*(Homu (L., N))
= hi(Homu (L., N)) = ExtYy (M, N)~

by Prop. 6.5, by the lemma, and by exactness of ~.

(10 points) Prove part (c¢) of Theorem 7.1 without using the theory of J-functors.
Instead, use short and long exact sequences and induction on %, as was done in class
in other proofs. Do not worry about showing that the isomorphisms are natural and
functorial.

First of all, the case i = 0 was already proved in (b), so we may assume that
1> 0.
As noted in class, by (II, Cor. 5.18) there is a surjection & — %, where & is a

finite direct sum @ O(—q;) with g; > 0 for all j. Therefore, we have a short exact
sequence of coherent sheaves,

0= 5HE&—F 0.

For all i > 0 we have Ext'(&,w) = @Ext"(Ox,w(q;)) = @ H (X,w(g;)) = 0 by
Prop. 6.7, by the fact that the direct sum of injective resolutions of a sheaf is an
injective resolution of the direct sum of the sheaves, and by Thm. 5.1. Similarly,
H"(X,&) 2@ H""(X,0(—q;)) =0 for all i >0 by Thm. 5.1.

By Prop. 6.4 and the dual of the long exact sequence in cohomology, we have exact
sequences

Ext'™1(&,w) — Ext' ™ (A, w) 5 Ext'(F,w) — Ext'(&,w) = 0
and
H' 7YX, 8)Y — H (X, ) 5 HUX, 7)Y — H'H(X,6)Y =0.

Now if i > 1 then Ext' '(&,w) = H" (X, &)Y = 0,50 f and ¢ are isomorphisms,
giving an isomorphism

Ext'(Z,w) < Ext" (A ,w) = H (X, )Y = H 7YX, 7)Y
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by induction on i (assuming that we can prove the base case).
For the base case ¢ = 1, we have a diagram

Hom(&,w) —— Hom(#,w) SN Ext'(#,w) —— 0

l l

HY(X,&)Y —— HY(X, %)V —— H" (X, Z#)Y —— 0

with exact rows. The two vertical arrows are isomorphisms by Thm. 7.1(b). The
square commutes by naturality (in .% ) of the pairing in the theorem. Indeed, let
a € Hom(&,w) . It maps to ao¢p € Hom(.#,w), which is then taken to to H" (a0 ¢) €
H™(X, %)V, where t is the isomorphism of Thm. 7.1(a). Going around the other way,
« is taken to toH"(a)) € H™(X, &)Y, which is taken to toH" (a)oH™(¢) € H™(X, #)".
These are the same element since H" is a functor, so the diagram commutes.

This gives the desired isomorphism when 7 =1.



