Math 256B. Solutions to Homework 12

1. (10 points) State an analogue of Theorem 7.1 for n = 0. Prove it directly, using as few results from Section 7 as possible. (You may use the two definitions of dualizing sheaf and the fact that they are equivalent.)

Theorem. Let k be a field, let n = 0, and let $X = \mathbb{P}^0_k = \operatorname{Spec} k$. Then:

- (a). From the definition, we have $\omega = \omega_X = \mathscr{O}_X$, since ω_X is \bigwedge^0 of a locally free line sheaf of rank 0. Then $H^0(X, \omega) \cong k$ (canonically).
- (b). For any coherent sheaf \mathscr{F} on X, the natural pairing

$$\operatorname{Hom}(\mathscr{F},\omega) \times H^0(X,\mathscr{F}) \to H^0(X,\omega) \cong k$$

is a perfect pairing of finite-dimensional vector spaces over k.

(Part (c) is not applicable, because the isomorphism is prescribed when i = 0 and is trivial when $i > \dim X = 0$.)

Proof. (a). We have $\omega = \tilde{k}$, so $H^0(X, \omega) \cong k$.

(b). Since X is affine, $\mathscr{F} \cong \widetilde{V}$, where V is a finitely generated module over k; i.e., a finite-dimensional vector space over k. Also $\operatorname{Hom}(\mathscr{F},\omega) = \operatorname{Hom}_k(V,k) = V^{\vee}$. Now, if V and W are finite-dimensional vector spaces over k, then any map $\phi \colon \widetilde{V} \to \widetilde{W}$ comes from a linear transformation $T \colon V \to W$, and this map also induces a map $H^0(X,\widetilde{V}) \to H^0(X,\widetilde{W})$ since $H^0(X,\widetilde{V}) \cong V$ and $H^0(X,\widetilde{W}) \cong W$ canonically, by (II, Cor. 5.5). Therefore the natural pairing in the statement of (b) is just the canonical pairing $V^{\vee} \times V \to k$.

- 2(NC). (10 points) Let $\mathfrak{U} = (U_i)_{i \in I}$ be an open covering of a topological space X, and let I' be a subset of I such that $\mathfrak{U}' := (U_i)_{i \in I'}$ also covers X. Construct natural maps $\mathscr{C}^p(\mathfrak{U},\mathscr{F}) \to \mathscr{C}^p(\mathfrak{U}',\mathscr{F})$ for all $p \in \mathbb{N}$ and all sheaves \mathscr{F} of abelian groups on X, functorially in \mathscr{F} , such that
 - (i). $\mathscr{C}^{\cdot}(\mathfrak{U},\mathscr{F}) \to \mathscr{C}^{\cdot}(\mathfrak{U}',\mathscr{F})$ is a map of complexes for all \mathscr{F} , and
 - (ii). if X is a scheme and if \mathscr{F} , \mathfrak{U} , and \mathfrak{U}' satisfy the hypotheses of (III, Thm. 4.5), then the maps $\check{H}^p(\mathfrak{U},\mathscr{F}) \to \check{H}^p(\mathfrak{U}',\mathscr{F})$ induced by this map of complexes are compatible with the maps of (III, Thm. 4.5).

The sheaf $\mathscr{C}^{p}(\mathfrak{U},\mathscr{F})$ is a product of sheaves, and $\mathscr{C}^{p}(\mathfrak{U}',\mathscr{F})$ is a product of a subset of those factors (i.e., the factors corresponding to $i_{0} < \cdots < i_{p}$ with $i_{j} \in I'$ for all j), so define the map $\pi^{p} \colon \mathscr{C}^{p}(\mathfrak{U},\mathscr{F}) \to \mathscr{C}^{p}(\mathfrak{U}',\mathscr{F})$ to be the projection to those factors.

To check that it is a map of complexes, recall the formula

$$(d\alpha)_{i_0,\dots,i_{p+1}} = \sum_{k=0}^{p+1} (-1)^k \alpha_{i_0,\dots,\hat{i}_k,\dots,i_{p+1}} \big|_{U_{i_0,\dots,i_{p+1}}} \,.$$

Here we only need to concern ourselves with factors (i_0, \ldots, i_{p+1}) with $i_j \in I'$ for all j. But for those factors, all of the terms in the right-hand side involve factors in $\mathscr{C}^p(\mathfrak{U}', \mathscr{F})$, so the projection maps π^p and π^{p+1} commute with the boundary maps dof each complex.

For part (ii), choose an injective resolution $0 \to \mathscr{F} \to \mathscr{I}^{\cdot}$ of \mathscr{F} in $\mathfrak{Ab}(X)$ and a morphism $\psi^{\cdot} : \mathscr{C}^{\cdot}(\mathfrak{U}', \mathscr{F}) \to \mathscr{I}^{\cdot}$ of complexes inducing the identity map on \mathscr{F} . Noting that π^{\cdot} also induces the identity on \mathscr{F} , it follows that $\phi^{\cdot} := \psi^{\cdot} \circ \pi^{\cdot} : \mathscr{C}^{\cdot}(\mathfrak{U}, \mathscr{F}) \to \mathscr{I}^{\cdot}$ is also a morphism of complexes that induces the identity map on \mathscr{F} .

If we use the map $\psi \circ \pi^{\cdot}$ to define the maps $\dot{H}^{p}(\mathfrak{U},\mathscr{F}) \to H^{p}(X,\mathscr{F})$, then it is clear from functoriality of the cohomology functor h^{p} that the maps of Lemma 4.4 are compatible with the maps in Čech cohomology induced by π^{\cdot} .

3. (10 points) Let k be a field. Compute the dualizing sheaf of the (reduced) scheme

$$X = V(z) \cup V(x, y) \subseteq \mathbb{P}^2_k$$
.

(This is the disjoint union of a line and a point.)

We start with a general lemma.

Lemma. Let \mathscr{F} be a sheaf of abelian groups on a topological space X. Let U and V be disjoint open subsets of X such that $U \cup V = X$, and let $i: U \hookrightarrow X$ and $j: V \hookrightarrow X$ be the inclusion maps. Then $\mathscr{F} \cong i_*(\mathscr{F}|_U) \times j_*(\mathscr{F}|_V)$.

Proof. For all open subsets W of X, the sheaf axioms give

$$\mathscr{F}(W) \cong \mathscr{F}(W \cap U) \times \mathscr{F}(W \cap V) = \left(i_*(\mathscr{F}_U)\right)(W) \times \left(j_*(\mathscr{F}_V)\right)(W) ,$$

compatible with the restriction maps as W varies.

Let L = V(z) and P = V(x, y) be the line and point, respectively, and let $i: L \hookrightarrow X$ and $j: P \hookrightarrow X$ be the corresponding closed embeddings. Since dim X = 1, the dualizing sheaf represents the functor $H^1(X, \cdot)^{\vee}$.

Let \mathscr{F} be a coherent sheaf on X. Then $\mathscr{F}|_{L}$ and $\mathscr{F}|_{P}$ are coherent sheaves on L and P, respectively. Then

$$\begin{aligned} H^{1}(X,\mathscr{F}) &\cong H^{1}\Big(X, i_{*}\big(\mathscr{F}\big|_{L}\big) \oplus j_{*}\big(\mathscr{F}\big|_{P}\big)\Big) \\ &\cong H^{1}\big(L, \mathscr{F}\big|_{L}\big) \oplus H^{1}\big(P, \mathscr{F}\big|_{P}\big) \\ &\cong H^{1}\big(L, \mathscr{F}\big|_{L}\big) , \end{aligned}$$

by the lemma, III Remark 2.9.1, III 2.10, and III Thm. 2.7. This also then holds for the duals, and therefore

$$H^1(X,\mathscr{F})^{\vee} \cong H^1(L,\mathscr{F}|_L)^{\vee} \cong \operatorname{Hom}_L(\mathscr{F}|_L,\omega_L) \cong \operatorname{Hom}_X(\mathscr{F},i_*(\omega_L)).$$

Therefore $\omega_X^{\circ} \cong i_* \mathscr{O}(-2)$.