Math 256B. Solutions to Homework 12

1. (10 points) State an analogue of Theorem 7.1 for $n = 0$. Prove it directly, using as few results from Section 7 as possible. (You may use the two definitions of dualizing sheaf and the fact that they are equivalent.)

Theorem. Let k be a field, let $n = 0$, and let $X = \mathbb{P}_k^0 = \text{Spec } k$. Then:

- (a). From the definition, we have $\omega = \omega_X = \mathcal{O}_X$, since ω_X is \bigwedge^0 of a locally free line sheaf of rank 0. Then $H^0(X,\omega) \cong k$ (canonically).
- (b). For any coherent sheaf $\mathscr F$ on X , the natural pairing

$$
Hom(\mathcal{F}, \omega) \times H^0(X, \mathcal{F}) \to H^0(X, \omega) \cong k
$$

is a perfect pairing of finite-dimensional vector spaces over k .

(Part (c) is not applicable, because the isomorphism is prescribed when $i = 0$ and is trivial when $i > \dim X = 0$.)

Proof. (a). We have $\omega = \tilde{k}$, so $H^0(X, \omega) \cong k$.

(b). Since X is affine, $\mathscr{F} \cong \widetilde{V}$, where V is a finitely generated module over k; i.e., a finite-dimensional vector space over k. Also $Hom(\mathscr{F}, \omega) = Hom_k(V, k) = V^{\vee}$. Now, if V and W are finite-dimensional vector spaces over k, then any map $\phi \colon \widetilde{V} \to \widetilde{W}$ comes from a linear transformation $T: V \to W$, and this map also induces a map $H^0(X, \widetilde{V}) \to H^0(X, \widetilde{W})$ since $H^0(X, \widetilde{V}) \cong V$ and $H^0(X, \widetilde{W}) \cong W$ canonically, by (II, Cor. 5.5). Therefore the natural pairing in the statement of (b) is just the canonical pairing $V^{\vee} \times V \to k$.

- 2(NC). (10 points) Let $\mathfrak{U} = (U_i)_{i \in I}$ be an open covering of a topological space X, and let I' be a subset of I such that $\mathfrak{U}' := (U_i)_{i \in I'}$ also covers X. Construct natural maps $\mathscr{C}^p(\mathfrak{U},\mathscr{F}) \to \mathscr{C}^p(\mathfrak{U}',\mathscr{F})$ for all $p \in \mathbb{N}$ and all sheaves \mathscr{F} of abelian groups on X , functorially in $\mathscr F$, such that
	- (i). $\mathscr{C}(\mathfrak{U},\mathscr{F}) \to \mathscr{C}(\mathfrak{U}',\mathscr{F})$ is a map of complexes for all \mathscr{F} , and
	- (ii). if X is a scheme and if \mathscr{F} , \mathfrak{U} , and \mathfrak{U}' satisfy the hypotheses of (III, Thm. 4.5), then the maps $\check{H}^p(\mathfrak{U}, \mathscr{F}) \to \check{H}^p(\mathfrak{U}', \mathscr{F})$ induced by this map of complexes are compatible with the maps of (III, Thm. 4.5).

The sheaf $\mathscr{C}^p(\mathfrak{U},\mathscr{F})$ is a product of sheaves, and $\mathscr{C}^p(\mathfrak{U}',\mathscr{F})$ is a product of a subset of those factors (i.e., the factors corresponding to $i_0 < \cdots < i_p$ with $i_j \in I'$ for all j), so define the map $\pi^p: \mathcal{C}^p(\mathfrak{U}, \mathscr{F}) \to \mathcal{C}^p(\mathfrak{U}', \mathscr{F})$ to be the projection to those factors.

To check that it is a map of complexes, recall the formula

$$
(d\alpha)_{i_0,\dots,i_{p+1}} = \sum_{k=0}^{p+1} (-1)^k \alpha_{i_0,\dots,\widehat{i}_k,\dots,i_{p+1}}|_{U_{i_0,\dots,i_{p+1}}}.
$$

Here we only need to concern ourselves with factors (i_0, \ldots, i_{p+1}) with $i_j \in I'$ for all j . But for those factors, all of the terms in the right-hand side involve factors in $\mathscr{C}^p(\mathfrak{U}',\mathscr{F})$, so the projection maps π^p and π^{p+1} commute with the boundary maps d of each complex.

For part (ii), choose an injective resolution $0 \to \mathscr{F} \to \mathscr{I}$ of \mathscr{F} in $\mathfrak{Ab}(X)$ and a morphism $\psi: \mathscr{C}(\mathfrak{U}', \mathscr{F}) \to \mathscr{I}$ of complexes inducing the identity map on \mathscr{F} . Noting that π also induces the identity on \mathscr{F} , it follows that $\phi := \psi \circ \pi : \mathscr{C}(\mathfrak{U}, \mathscr{F}) \to \mathscr{I}$ is also a morphism of complexes that induces the identity map on $\mathscr F$.

If we use the map $\psi \circ \pi^+$ to define the maps $\check{H}^p(\mathfrak{U}, \mathscr{F}) \to H^p(X, \mathscr{F})$, then it is clear from functoriality of the cohomology functor h^p that the maps of Lemma 4.4 are compatible with the maps in Čech cohomology induced by π .

3. (10 points) Let k be a field. Compute the dualizing sheaf of the (reduced) scheme

$$
X = V(z) \cup V(x, y) \subseteq \mathbb{P}_k^2.
$$

(This is the disjoint union of a line and a point.)

We start with a general lemma.

Lemma. Let $\mathscr F$ be a sheaf of abelian groups on a topological space X. Let U and V be disjoint open subsets of X such that $U \cup V = X$, and let $i: U \hookrightarrow X$ and $j: V \hookrightarrow X$ be the inclusion maps. Then $\mathscr{F} \cong i_*(\mathscr{F}|_U) \times j_*(\mathscr{F}|_V)$.

Proof. For all open subsets W of X , the sheaf axioms give

$$
\mathscr{F}(W) \cong \mathscr{F}(W \cap U) \times \mathscr{F}(W \cap V) = \big(i_*\big(\mathscr{F}\big|_U\big)\big)(W) \times \big(j_*\big(\mathscr{F}\big|_V\big)\big)(W) ,
$$

compatible with the restriction maps as W varies. \square

Let $L = V(z)$ and $P = V(x, y)$ be the line and point, respectively, and let $i: L \hookrightarrow X$ and $j: P \hookrightarrow X$ be the corresponding closed embeddings. Since dim $X = 1$, the dualizing sheaf represents the functor $H^1(X, \cdot)^\vee$.

Let \mathscr{F} be a coherent sheaf on X. Then $\mathscr{F}|_L$ and $\mathscr{F}|_P$ are coherent sheaves on L and P , respectively. Then

$$
H^{1}(X, \mathscr{F}) \cong H^{1}\left(X, i_{*}(\mathscr{F}|_{L}) \oplus j_{*}(\mathscr{F}|_{P})\right)
$$

\n
$$
\cong H^{1}(L, \mathscr{F}|_{L}) \oplus H^{1}(P, \mathscr{F}|_{P})
$$

\n
$$
\cong H^{1}(L, \mathscr{F}|_{L}),
$$

by the lemma, III Remark 2.9.1, III 2.10, and III Thm. 2.7. This also then holds for the duals, and therefore

$$
H^1(X,\mathscr{F})^{\vee} \cong H^1(L,\mathscr{F}|_L)^{\vee} \cong \text{Hom}_L(\mathscr{F}|_L,\omega_L) \cong \text{Hom}_X(\mathscr{F},i_*(\omega_L)).
$$

Therefore $\omega_X^{\circ} \cong i_* \mathscr{O}(-2)$.