Math 256B. Solutions to Homework 13

(10 points) Let k be a field. Compute the dualizing sheaf of the (reduced) scheme
X =V()UV(x,y) CP}.

(This is the union of a plane and a line in P}, which intersect at a point.)

Let P =V(z) and L = V(z,y) be the plane and line, and let i: P < X and
j: L — X be the corresponding closed embeddings.

Let .# be a coherent sheaf on X . By II 5.8, i*.% is a coherent sheaf on P. By
adjointness of i, and i* (p. 110), we have a bijection

Homg, (i*.%,i*.F) = Home, (F,i,i* F) .

Let 9: # — i,i*%# be the map corresponding to the identity map on *.%# under
this bijection. We claim that ¢ is surjective and that the support of its kernel is
contained in L. Surjectivity is a local question (on X ), so let U = Spec A be an open
affine in X, and let I be the ideal sheaf of U NP in U. Then ¢ corresponds to
the homomorphism A — A/I. Let M be an A-module such that .7 ‘U ~ M . Then
11 F = (o(M/IM))~, and the map M — o(M/IM) is surjective. Therefore so is
1. As for the kernel, ¢ is an isomorphism over X \ L, so 9 is also an isomorphism
over this set.
Now let # = ker), so that we have a short exact sequence

0 —F5ii* T —0.

By I1 5.8 and IT Ex. 5.5, i,i*.% is coherent; therefore so is % . From the corresponding
long exact sequence in cohomology, we have

H*(X, %) — H*(X,Z) — H*(X,i,i*F) — H*(X, %) .

Since Supp.# C L has dimension < 2, H*(X,#) = H3(X,#) = 0, so the middle

map is an isomorphism. Therefore,
H*(X,7) =2 H*(X,i.i*F) = H*(P,i*%) = Homp(i*.% ,wp)” = Homx (F,i.wp)" .
Here the third isomorphism is by duality (since i*.%# is coherent), and the fourth follows

from adjointness of * and i, .
Therefore w$ = i.wp = 1,0(—3).
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(15 points) Prove that the derived-functor cohomology class determined by the Cech
cocycle a of (III, Remark 7.1.1) is invariant under automorphisms of P} . Do this by
direct computation.

[Hints: You may find (II, Example 7.1.1) and Exercise 2 on Homework 12 useful.
Remember elementary matrices. For information on differentials, see pages 172-173
and (II, 8.13) in Hartshorne.]

Let k be a field, let n € Z~¢, and let X =P} .
We start with a lemma that will be used twice in this solution.

Lemma. Let I = {0,1,...,n}, let 7 € R\ 1T, let I" =TU{r}, let o € I, and let
I' =1"\{o}. Let U; be open affine subsets of X forall i € I". Let 4 = (U;);er,
W= (U)ier , and W' = (U;)ierr . Assume that $4 and Y’ (and therefore also
W) cover X, so that they all satisfy the conditions of (III, Thm. 4.5). Let
Ur=Nic1 Ui, Up = Niep Ui, and Upr = (V,cp0 Ui . Finally, let . be a quasi-
coherent sheaf on X and let o € I'(U;, #) and o € I'(Up,.#) be sections.
Then

(a). the above sections « and o' are cocycles in C™(4,.%#) and C™(W,F),
respectively; and

(b). if there exists a cocycle 5 € C™ (W' %) whose components [; and [, are
the above sections o and o', respectively, then the Cech cohomology classes
of a and o' are mapped to the same element in H™(X,.7) by the relevant
maps of (III, Lemma 4.4).

Proof. First of all, since I has n + 1 elements, C™(,.%#) is just I'(Ur,.#), so (by
slight abuse of notation) we may regard « as an element of C"(,.%). It is a cocycle
because C" (8, . F) = 0 (it is an empty product). The same is true for o/. This
proves (a).

Next, we consider (b). By Question 2 on Homework 12, there are maps

7 €W, F) = €U .F) and 7€ W, F)—=ECW,F) (1)
of complexes, which give the diagram
H"(U", . F) —— H™U,.F)
| | 8
H"(W,F) —— H"(X,ZF).

The above diagram commutes, because the corresponding diagram of maps of complexes
commutes up to homotopy, by what was proved early in the semester about maps of
complexes to injective resolutions.

Since the map of (III, Lemma 4.4) is obtained by applying I'(X,-) to the Cech
complexes of sheaves (giving the Cech complexes C"(%,.%) of abelian groups), and
then applying A", and since g € C™(U’,.%) is mapped to a € C™(U,.#) and
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o € C"(W,.#) by the maps on global sections obtained from the maps of (1), we
obtain that the cohomology classes of o and o’ are mapped to the same element in
H™(X,.%), as was to be shown (because they are both mapped to the image of the
cohomology class of # in H"(X,.%#), by commutativity of the diagram (2)). O

Now we consider the problem at hand.
Let xq,...,z, bethe standard homogeneous coordinates on X =P}, let w = wx ,
and let a be as in (III, Remark 7.1.1). Let y; = z;/x¢ for all i =1,...,n. Then

:%/\.../\%‘ (3)

Y1 Yn

(%

Let ¢ be the cohomology class in H™(X,w) corresponding to a (under the map of
Lemma 4.4, with ¢ asin 7.1.1).

When applying the lemma, we will always let U; = D, (z;) be the standard open
subset for all ¢ € I, so that { is the standard open cover of X = P}!. Also, we will
use . = w, we will let « be as in (3), and we will use the ordering on I” inherited
from the ordering on R.

By (II, Example 7.1.1), all automorphisms of P}’ can be expressed using matrices
in GL,11(k), and by Gaussian elimination every such matrix is a product of elementary
matrices. Therefore it will suffice to show that ¢*c = ¢ for each of the following types
of automorphisms ¢.

(1) ¢ interchanges the variables z; and x, (with j # ¢ and j,¢ € {0,1,...,n}).
Since any permutation can be accomplished by successively interchanging consecutive
elements, we may assume that ¢ = j + 1, so ¢ interchanges x; and x4, where
0<j<n.

We start by showing that ¢*a = —«.

Case I. Assume that j > 0. Then we are interchanging y; and y;411,50 ¢*a = —«
is immediate from the fact that the wedge product anticommutes.

Case II. Assume that j = 0. Then we are interchanging zy and z; .
This changes y; to 1/y; and y; to y;/y1 when i > 1. Note that

dlww) udv+wvdu du dv

uv uv u v

Y

so du/u acts like dlogu, even though there is no logarithm function on K(P}). So

Vyr ) wi/n yio L

Y

o /) /"\ dlyi/y) _ _dn /n\ (d% _ dyl) _ oy

Yi U1 Y1 Yn

as was to be shown.

To apply the lemma, let 0 = j,let 7 = j+1.5, and let U; = U;. Then both 4 and
4" will be the standard open covering of P}, but the ordering on I’ = {0,1,...,j — 1,
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j+1,7,54+2,...,n} will reflect the fact that U; and Uj;, have been interchanged.
In other words, ' = ¢*U (including the ordering). Note also that

I"={0,1,....,5,i+1,7,j+2,...,n}

(where the list of elements reflects the ordering).

Let o = ¢*a = —a € C"(W,w), and let 5 be the element of C" (U’ ,w) such
that 87 = a, B = o', and all other components of 3 are zero. Since C"1(U” w)
has only one factor I'(Up»,w), and since I = I"\{j+1.5} and I' = I""\ {j}, we have

df = (=1"a+ (-1)/d’ = (1) (a +a/) = 0.

Note that Uy» = Up = Uy due to the duplication U, = U, , so restriction operations
( j

are not necessary. )
Thus S is a cocycle in C"(U”,w), and the lemma then implies that [p*a] = [¢]

in H"(X,w).

(2) ¢:[xo:...;zp] > [To+Azy iy s 20+ iy with A€ K.
We have
o i) ) i)
a:o—fl)\azl IO‘T‘Z)\$1 Ioig\wl
A ()
- x; To+AT1
i=1 Zo xo
_A (dy dOw +1>>
o\ Y Ay +1

This is not equal to +a, so more work is required. We need to handle the difference

1 d d
’y:za—qﬁ*a:(l— )yl/\.../\yn
Ayi+1) Yn
A d dyy,
Ayr +1 yg Yn

Note that the factor y; in the above expression cancels, so v extends to a global section
of w over Dy(xg+ Ax1) N D4 (z9) N Dy(x2) NN Dy(xy,). Therefore, we can apply
the lemma as follows.
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Let 7= —1,s0that I = {-1,0,...,n},let U_; = Dy(zo+Az1),and let 0 =0.
Let o/ = ¢*a € C™(U,w) (this can be seen by looking at the first expression for ¢*«
above). As noted above, we have v € I'(Upn (1}, w) .

Thus, we may let 5 be the element of C™(i"”,w) such that 8y = a, B = o/,
Brnq1y = —7, and all other components of 3 are zero. Since C™" (U w) has only
one factor I'(Uyr,w), we have

dB = pBr—Br + By =a—a + (=) =0.

Thus, we again have that [a] and [¢*a] give the same element of H"(X,w).

(3) ¢:fwo a1 :mo:---xp] = [mo s Axy @ i -+ xy] with A € k*. Here
« is invariant because y; is multiplied by A and all other y; are unchanged, and
d(Ay1)/(Ay1) = dyi/y1. Since the open cover is also the same (and with the same
ordering), the cohomology class ¢ is unchanged.

(10 points) Let k be a field, let n € Zs(, and let X = P}. Conclude from the previous
exercise that there is a canonical trace map

t: H"(X,wx) = k.

By (III, Thm. 7.1a), we have H"(X,wx) = k, so by the previous exercise it will
suffice to show that the cohomology class of « is nonzero, because then ¢ can be chosen
such that t([a]) =1.

This is done using Cech cohomology, either via an isomorphism wyx = & (—n—1),
or directly in wx .

Proof using an isomorphism wyx — O(-—n —1). Let 4 = {Uy,...,U,} be the cov-
ering used in the proof of (III, 5.1), where U; = D4 (z;) for all i. As noted in the
proof of (III, 5.1c), the Cech cohomology group H™(i, &(—n — 1)) is generated by
gt € T(UgN - N U, O(—n — 1)) = S(—n — D) (zgean) -

In order to relate this to wyx , we start by constructing an explicit isomorphism
wx — O(—n —1). This is equivalent to giving an isomorphism wx(n + 1) = Ox,
which in turn is equivalent to giving a nonzero global section of wx(n+1).

This isomorphism does not need to be canonical (in fact, it can’t be), but it does
need to be global.

The set Uy is affine, equal to Speck[y1, ..., yn], where y; = z;/xo (i=1,...,n).
Then the section dyi A---Ady, generates wx over Uy, and therefore x8+1dy1/\- - Adyn
generates wx(n+ 1) over Up.

Now consider what happens on U, . This set is affine, equal to Speck[z, ..., 2],
where z; = z;/z, (i = 0,...,n — 1), and wx(n + 1) is generated over U, by
2" dzg Ao Adz, 1. Since y; = 2 /29 for 1 <i<n and y, = 1/z, we have

dZZ‘ Z; dZ()

dy; = 1 - 2

(i=1,...,n—1) and dyn = ——
20



and therefore

d dzp— n_1d d
n+1dy1/\ Adyn—x8+1< _Zl ZO)/\--'/\<Z 1_2’ 1230>/\<_2;0>

() ()

20
= < 2 >d20 ANdzy AN+ Ndzp_q

= )n n+1d20 A le VANEERIVA dzn_l s

which, as noted above, is a generator for wx(n+ 1) over U, .

Therefore the map is an isomorphism over UyUU,, . By similar arguments, the map
is an isomorphism over Uj; for all 4, so in fact we have an isomorphism wx (n+1) = Ox ,
as desired.

This isomorphism takes

n n+1
T dys N -+ Ndyn,
a=—2L—dy A Ady, = n Y
€Tl Ty Tody - Tp
to
1
Tox1- Ty ’

which generates H"(X,0(—n —1)). Therefore a generates H"(X,wx), as was to be
shown. g
Proof by working directly on wx . As before, we let y; = zj/xo forall j =1,...,n,

so that Uy = Speckl[y1,...,yn] and
. wod<$1> A...Ad<$n)
Ty "Tnp i) )
=y ey tdy A Adyn € O (U wx) =T(Ug N+ N Uy, wy) -

Showing that the cohomology class of « in H™(X,wx) is nonzero is then a matter of
showing that a is not in the image of C"~'(U,wx) = C™(thwx).

In what follows, we will use multiindex notation, so that y' = y;'---yin | where
i=(i1,...,iy) € Z". Then the set

B:={y'dy1 A+ ANdy, i€ Z"}

is a basis for C™(wx). We also let U; denote Uy N ---N ﬁj Nn---NU, for all
7 =0,...,n, where the hat denotes omission, so that

cnt (U wyx) :H (Us,wx) -
7=0



Therefore

im(C™" (U, wx) = C™ (U, wx)) Zlm (U, wx) = C" (M wx)) -

j=0

Now, for all j > 0, U; C Uy, so the image of I'(U;, wx) — C™(4,wx) can be computed
using the generator dy; A---Ady, of wx over Uy. This image is spanned by the subset

Bj:={y'dyy A---Ndy, :i€Z", i; >0} C B.

To compute By, we note that Uz C U, , and U, has affine coordinates zp,...,2zn_1,
where zg = 1/y, and z; = y;/y, for all 0 < i < n. Then dzy = —dy,/y> and
dz; = dy; /yn — yidy, /y2 , and therefore
d d dy,— dy; A---Nd
dzo A Ndzpog = — e N L g AL (e B D
Yn Yn Yn Yn

Therefore the image of I'(Us, wx) — C™(4,wx) is spanned by the set

o Ayt A ANdyy .
By ::{ 80---,2%711“—“” 2JEZ", jo >0
Yn
SIDCG Z ]n l/yn+1 — y.{l ygln_ ly (]0"1‘ A+ Jn— 1+TL+1) yi’ Where (il’,,,’in) —
(jl,...,jn,l, ]0— -+ —Jn—1 —n —1) and therefore jo = —iy —--+- — i, —n — 1, this
set is

Boz{yidyl/\-"/\dyn:iEZ”, i+ +i, <-n—-1}CB.

Since all of the sets B; are subsets of B, and none contain a (which corresponds to
iy =+ =i, = —1), we have that « is not in the image of C" !({,wx) — C" (4, wx),
as was to be shown. 0

(For those of you familiar with duality of de Rham cohomology in analysis, our
trace map corresponds to the integration map of n-forms on a real n-manifold.)



