
Math 256B. Solutions to Homework 14

1(nc). (10 points) Let k be a field. Find the dualizing sheaf of V (xy) in P2
k (the union of

two lines in P2
k intersecting in a point, with reduced induced subscheme structure).

Either express it as the restriction to X of a line sheaf L on P2
k , or show that

no such L exists.
[Hint: Don’t work too hard.]

Since X is a Cartier divisor, cut out by the homogeneous polynomial xy of degree
2 , its ideal sheaf is IX

∼= O(−X) ∼= O(−2) . Since X is also a complete intersection,
III Thm. 7.11 gives

ω◦X
∼= ωP ⊗ (IX/I

2
X)∨ ∼= (O(−3)⊗ O(−2)∨)

∣∣
X
∼= O(−1)

∣∣
X
.

2. (10 points) Let A be a ring. Show that TorAi (M,N) ∼= TorAi (N,M) for all A-modules
M and N , and for all i ∈ N (without looking it up anywhere). Use a spectral sequence.

[Hint: Use the opposite(s) of one or more categories.]

This proof will be modeled after the proof of Prop. 6.5 given in class. However,
Tor is a left derived functor, so things need to be done a bit differently here. We would
need to either develop a theory of spectral sequences for double complexes in the third
quadrant, or reverse all of the arrows.

We choose the latter (reversing the arrows). This is possible because the definition
of abelian category is symmetric in reversal of the arrows, so in particular the opposite
of an abelian category is also an abelian category.

But first, we describe Tor . Let A be a ring. Classically, TorAi (M, ·) is the ith

left derived functor of the (right exact) functor M ⊗A · , from the category Mod(A)
to itself. The category Mod(A) has enough free modules (of arbitrary rank), hence
enough projectives, so this works.

We let Dom(A) denote the opposite of the category Mod(A) (Dom is Mod spelled
backwards – get it?). As noted above, this is an abelian category. Then M ⊗A · is a
covariant left exact functor from Dom(A) to itself, and the ith right derived functors

give the objects TorAi (M, ·) , with the corresponding morphisms reversed in direction.
In the category Dom(A) , free modules are injective, so a free resolution F· → N → 0 of
an A-modules N (in Mod(A) ) gives an injective resolution 0→ N → I· in Dom(A) ,
where Ii = Fi for all i . Therefore, Tori(M,N) = hi(M ⊗A I·) .

Now fix A-modules M and N , and let 0 → M → I· and 0 → N → J · be
injective resolutions of M and N , respectively, in Dom(A) (coming from free, hence
projective, resolutions in Mod(A) ). Define a double complex K·,· by

Kp,q = Ip ⊗A Jq for all p, q ∈ N ,

with differentials dp,q : Kp,q → Kp+1,q and δp,q : Kp,q → Kp,q+1 determined by the
maps Ip → Ip+1 and Jq → Jq+1 , respectively.
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Let {E·,·r }r∈N be the spectral sequence obtained from this double complex. Then

(as was noted in class on April 24), Ep,q0
∼= Kp,q ∼= Ip ⊗A Jq , dp,q0 : Ep,q0 → Ep,q+1

0 is
the map δp,q , and

Ep,q1 = hq(Kp,·) = hq(Ip ⊗A J ·) .

Since all Ip are free modules,

hq(Ip ⊗A J ·) ∼= Ip ⊗A hq(J ·) ∼=
{
Ip ⊗A N if q = 0 ;

0 if q > 0 .

Again, from class on April 22–24, the maps dp,01 : Ep,01 → Ep+1,0
1 are the maps in co-

homology induced by δp,· : Kp,· → Kp+1,· , so they are the maps Ip⊗AN → Ip+1⊗AN .
The E2 terms of this spectral sequence are then the cohomology of the E1 terms in
d1 ; hence

Ep,02 = hp(I· ⊗A N) = TorAp (N,M) ,

and Ep,q2 = 0 for all q 6= 0 . Therefore, as was done in class,

Hp(K·) ∼= Ep,02
∼= TorAp (N,M) for all p .

Now let K̃·,· be the transpose of the double complex K·,· (i.e., K̃p,q = Kq,p , and
d and δ are interchanged accordingly). A computation similar to the above gives

Hp(K̃·) ∼= TorAp (M,N) for all p .

As was noted in class, we have Hp(K̃·) ∼= Hp(K·) ; hence

TorAp (M,N) ∼= TorAp (N,M) for all p .

3(nc). (10 points) Hartshorne III Ex. 8.1: Let f : X → Y be a continuous map of topological
spaces. Let F be a sheaf of abelian groups on X , and assume that Rif∗F = 0 for
all i > 0 . Show that there are natural isomorphisms, for each i ≥ 0 ,

Hi(X,F ) ∼= Hi(Y, f∗F ) .

(This is a degenerate case of the Leray spectral sequence—see Godement [1, II, 4.17.1].)

Let 0→ F → I · be a flasque resolution of F . By Cor. 8.3, this resolution can
be used to compute Rif∗F , so

hi(f∗I
·) =

{
f∗F if i = 0;

0 otherwise.

Thus 0 → f∗F → f∗I · is exact; since the f∗I i are flasque for all i (II Ex. 1.16d),
this is a flasque resolution of f∗F . We can use these flasque resolutions to compute
cohomology, so:

Hi(X,F ) ∼= hi(Γ(X,I ·)) = hi(Γ(Y, f∗I
·)) ∼= Hi(Y, f∗F ) .
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4. (20 points) Hartshorne III Ex. 8.4: Let Y be a noetherian scheme, and let E be a
locally free OY -module of rank n + 1 , n ≥ 1 . Let X = P(E ) (II, §7), with the
invertible sheaf OX(1) and the projection morphism π : X → Y .

(a). Then π∗O(l) ∼= Sl(E ) for l ≥ 0 , π∗O(l) = 0 for l < 0 (II, 7.11);
Riπ∗(O(l)) = 0 for 0 < i < n and all l ∈ Z ; and Rnπ∗(O(l)) = 0 for
l > −n− 1 .

(b). Show that there is a natural exact sequence

0 −→ ΩX/Y −→ (π∗E )(−1) −→ O −→ 0 ,

cf. (**, 8.13), and conclude that the relative canonical sheaf ωX/Y = ∧nΩX/Y
is isomorphic to (π∗ ∧n+1 E )(−n − 1) . Show furthermore that there is a
natural isomorphism Rnπ∗(ωX/Y ) ∼= OY (cf. (7.1.1)).

(c). Now show, for any l ∈ Z , that

Rnπ∗(O(l)) ∼= π∗(O(−l − n− 1))∨ ⊗ (∧n+1E )∨ .

(d). Show that pa(X) = (−1)npa(Y ) (use (Ex. 8.1)) and pg(X) = 0 (use (II,
8.11)).

(e). In particular, if Y is a nonsingular projective curve of genus g , and E a
locally free sheaf of rank 2 , then X is a projective surface with pa = −g ,
pg = 0 , and irregularity g (7.12.3). This kind of surface is called a geomet-
rically ruled surface (V, §2).

For part (b), you may assume that Remark 7.1.1 is true for arbitrary commutative
rings. For part (d), assume that Y is a nonsingular variety.

Parts (a)–(c) basically give a relative version of (III, Thm. 5.1).
Some of you had problems with going from the local case to the global case. It’s

best to start with as many global things as possible, and then prove various properties
locally.

(a). By II 7.11 and the proof of II 5.13, the natural map
⊕

l∈N S
lE →

⊕
l∈Z π∗O(l)

is an isomorphism. This gives π∗O(l) ∼= Sl(E ) for l ≥ 0 and π∗O(l) = 0 for all
l < 0 . In the special case Y = SpecA with A noetherian, we have Riπ∗(O(l)) = 0
for 0 < l < n and Rnπ∗(O(l)) = 0 for l > −n − 1 by Prop. 8.5 and Thm. 5.1. The
general case then follows by Cor. 8.2. All of these isomorphisms are natural.

(b). It suffices to show instead that there is a natural short exact sequence

0 −→ ΩX/Y (1)
α−→ π∗E

β−→ OX(1) −→ 0 . (*)

Here β is the natural map π∗π∗OX(1)→ OX(1) defined on open affines SpecA ⊆ Y
and SpecB ⊆ π−1(SpecA) by the natural map AM ⊗A B →M , m⊗ b 7→ bm , where

OX(1)
∣∣
SpecB

= M̃ .
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To define α , pick an irreducible open affine SpecA ⊆ Y over which E is free
with a basis B . Let τ : π∗O(1) → E be the isomorphism from part (a). Then
ΩX/Y

∣∣
π−1(SpecA)

is the locally free Oπ−1(SpecA)-module which for all y ∈ B is free

over D+(y) with basis {d(x/y) : x ∈ B \ {y}} , and α is defined on D+(y) by

α

(
d

(
x

y

)
⊗ y
)

= τ(x)− x

y
τ(y) (**)

for all x ∈ B \ {y} .
Both sides of (**) are A-linear in x , so (**) holds for all x ∈ Γ(SpecA,E ) . Also,

since

d

(
y

x

)
⊗ x =

(
−d(x/y)

(x/y)2

)
= −y

x
d

(
x

y

)
⊗ y

and

τ(y)− y

x
τ(x) = −y

x

(
τ(x)− x

y
τ(y)

)
on a suitable nonempty open subset of π−1(SpecA) , (**) holds for all nonzero x, y ∈
Γ(SpecA,E ) on some nonempty open subset (depending on x and y ). Since E is
torsion free, (**) holds on D+(y) ⊆ π−1(SpecA) for all such x and y .

Thus the definition of α is independent of the choice of basis of E over SpecA .
In particular the definitions of α are compatible as SpecA varies, so they glue to give
a well-defined natural map α : ΩX/Y (1)→ π∗E .

The sequence (*) is therefore exact, since it is exact over open affines in Y by (II,
8.13).

By (II, Ex. 5.16d), we then have

∧nΩX/Y ∼= (π∗ ∧n+1 E )(−n− 1) .

As for the final assertion, we note by Remark 7.1.1 that for any ring A there is a
canonical isomorphism Hn(PnA, ωPn

A/A
)
∼→ A which is invariant under change of basis

and functorial in A . By (III, Prop. 8.2) and (III, Prop. 8.5) this gives a canonical

isomorphism Rnπ∗ωX/Y
∼→ OY when Y is affine. Since this isomorphism is functorial

in A (and in particular is preserved under passing to a principal open affine SpecAf in
Y = SpecA ), these isomorphisms for various open affines in Y glue to give a canonical

isomorphism Rnπ∗ωX/Y
∼→ OY for arbitrary Y , as was to be shown.

(c). As noted earlier, this is basically a relative version of (III, 5.1d).
Following the principle mentioned at the beginning of the solution, we start with

some global constructions.
Fix m ∈ Z .
For all open U ⊆ Y , tensoring with a section s ∈ Γ(π−1(U),OX(m)) gives a sheaf

map ωX/Y (−m)
∣∣
π−1(U)

→ ωX/Y
∣∣
π−1(U)

, which (since Rnπ∗ is a functor) gives a map

(Rnπ∗(ωX/Y (−m)))
∣∣
U
→ (Rnπ∗ωX/Y )

∣∣
U

. This gives a map

Γ(U, π∗OX(m)) −→ Γ(U,HomY (Rnπ∗(ωX/Y (−m)), Rnπ∗ωX/Y )) .
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As U varies, the above maps are compatible with the restriction maps of the relevant
sheaves, so this gives a natural map

π∗OX(m) −→HomY (Rnπ∗(ωX/Y (−m)), Rnπ∗ωX/Y ) (1)

of sheaves on Y . By (III, 8.2) and (III, 8.5), (Rnπ∗ωX/Y )
∣∣
U
∼= Hn(π−1(U), ωX/Y )∼

and Rnπ∗(ωX/Y (−m))
∣∣
U
∼= Hn(π−1(U), ωX/Y (−m))∼ on open affines U = SpecA in

Y on which E is trivial. Therefore, by (III, 5.1d), the map (1) is an isomorphism.
By part (b),

HomY (Rnπ∗(ωX/Y (−m)), Rnπ∗ωX/Y ) ∼= HomY (Rnπ∗(ωX/Y (−m)),OY )

∼= (Rnπ∗(ωX/Y (−m)))∨ . (2)

On open affines U = SpecA as above, we also have that π−1(U) ∼= PnA and
(again by (III 5.1), since ωX/Y ∼= O(−n− 1) ), that Hn(π−1(U), ωX/Y (−m)) is a free
A-module of finite rank. Therefore Rnπ∗(ωX/Y (−m)) is a locally free sheaf on Y of
finite rank. We then have

(π∗OX(m))∨ ∼= Rnπ∗(ωX/Y (−m))

∼= Rnπ∗((π
∗ ∧n+1 E )(−m− n− 1))

∼= (∧n+1E )⊗Rnπ∗(OX(−m− n− 1))

by combining the duals of (1) and (2); by part (b); and by (Ex. 8.3) (respectively).
Setting m = −l − n− 1 and rearranging terms then gives

Rnπ∗(OX(l)) ∼= (π∗OX(−l − n− 1))∨ ⊗ (∧n+1E )∨ ,

as was to be shown.

(d). Following the hint, we first show that Riπ∗(OX) = 0 for all i > 0 . When
0 < i < n this follows from part (a). When i = n this follows from part (c) and
the fact that π∗(O(−n − 1)) = 0 (from part (a)). When i > n this follows from
Prop. 8.5 and the fact that if Y is affine then Hn(X,OX) can be computed using
Čech cohomology with an open cover consisting of n+ 1 elements.

Therefore, Ex. 8.1 applies, which gives

χ(OX) =
∑
i

(−1)ihi(X,OX)

=
∑
i

(−1)ihi(Y, π∗OX)

=
∑
i

(−1)ihi(Y,OY )

= χ(OY ) .
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Here hi(X,OX) denotes dimkH
i(X,OX) and similarly for hi(Y,OY ) .

Therefore

pa(X) = (−1)dimX(χ(OX)− 1) = (−1)n+dimY (χ(OY )− 1) = (−1)npa(Y ) .

Next, for pg(X) , we note that by II Ex. 8.3(b) (applied locally on AnU for open
U ⊆ Y over which E is free), the First Exact Sequence for π is exact on the left also:

0 −→ π∗ΩY/k −→ ΩX/k −→ ΩX/Y −→ 0 .

Therefore, by II Ex. 5.16d,
ωX ∼= ωX/Y ⊗ ωY .

For any open U ⊆ Y over which E and ωY are trivial, we have

ωX
∣∣
π−1(U)

∼= ωX/Y
∣∣
π−1(U)

∼= OX(−n− 1)
∣∣
π−1(U)

,

and therefore Γ(π−1(U), ωX) ∼= Γ(π−1(U),OX(−n− 1)) = 0 by part (a). Thus

pg(X) = h0(X,ωX) = 0 .

(e). From part (d) we get pa(X) = −pa(Y ) = −g and pg(X) = 0 , and its irregularity
is pg(X)− pa(X) = g .

5(nc). (10 points) Give an explicit example showing that (III, Thm. 8.8) is false if X and Y
are allowed to be locally noetherian schemes instead of noetherian schemes.

Let k be the field Q , for all i ∈ N let Xi be a copy of P1
k , and let X be the

disjoint union X = X0

∐
X1

∐
. . . . Let F be the sheaf on X whose restriction to

Xi is O(−i) for all i . Then F is a coherent sheaf on X (see the definition on page
111), because its restriction to Xi is coherent for each i (in more detail, X can be

covered by the standard open affines D+(x0) and D+(x1) , where F
∣∣
U
∼= k̃[x] for

U = D+(x0) and U = D+(x1) ).
Now, letting g : P1

k → Spec k be the canonical morphism, we have that O(j) has
no global sections whenever j < 0 ; therefore g∗g∗O(j) = 0 , thus g∗g∗O(j) → O(j)
is not surjective. Then, for any n ∈ Z , choose i ∈ N such that i > n . Then
F (n)

∣∣
Xi

∼= O(n− i) , which implies that f∗f∗F (n)→ F (n) is not surjective, because

it is not surjective over Xi . Therefore part (a) is false.
Part (b) remains true in this example (and is true in general, because its statement

is local on the base).
For part (c), by duality we have H1(P1

k,O(j)) 6= 0 for all j ≤ −2 . Therefore, for
any given n , we have R1f∗F (n)

∣∣
Xi

∼= (H1(Xi,O(n − i)))∼ 6= 0 for all i ∈ N with

i ≥ n+ 2 . This implies that (c) is false.


