
Math 256B. Solutions to Homework 2

1. (15 points) Hartshorne II Ex. 2.17: A Criterion for Affineness.

(a). Let f : X → Y be a morphism of schemes, and suppose that Y can be cov-
ered by open subsets Ui , such that for each i , the induced map f−1(Ui)→ Ui
is an isomorphism. Then f is an isomorphism.

(b). A scheme X is affine if and only if there is a finite set of elements f1, . . . , fr ∈
A = Γ(X,OX) , such that the open subsets Xfi are affine, and f1, . . . , fr
generate the unit ideal in A . [Hint: Use (Ex. 2.4) and (Ex. 2.16d) above.]

(a). The conditions easily imply that f induces a homeomorphism sp(X)
∼−→ sp(Y ) .

For all P ∈ Y there is some i for which P ∈ Ui ; then, since f
∣∣
f−1(Ui)

is an isomor-

phism, f# induces an isomorphism of stalks OY,P → (f∗OX)P . Since f is a homeo-

morphism on topological spaces this implies that f# is an isomorphism OY
∼−→ f∗OX ,

and therefore f is an isomorphism of schemes.

(b). The “ =⇒ ” direction is trivial (take r = 1 and f1 = 1 ).
For the converse direction, by (II, Ex. 2.4) there is a morphism f : X → SpecA

that induces the identity map A→ Γ(X,OX) . Since f1, . . . , fr generate the unit ideal
in A , the sets Ui := D(fi) cover SpecA . We are given that Xfi = f−1(D(fi)) are
affine, so

Xfi = Spec Γ(Xfi ,OX) = SpecAfi

by Ex. 2.16d. (In order to apply Ex. 2.16d, we need to know that X is quasi-compact,
and that all sets Xfi ∩ Xfj are quasi-compact. The first assertion holds because
by assumption X is a finite union of affine, hence quasi-compact, sets. The second
assertion holds because by assumption Xfi is affine, so Xfi ∩ Xfj = (Xfi)fj is a
principal open subset of an affine set, hence affine and therefore quasi-compact.)

Therefore f−1(Ui) → Ui is an isomorphism for all i , so f is an isomorphism by
part (a).

2. (10 points) Hartshorne III Ex. 2.2: Let X = P1
k be the projective line over an alge-

braically closed field k . Show that the exact sequence 0 −→ O −→ K −→ K /O −→ 0
of (II, Ex. 1.21d) is a flasque resolution of O . Conclude from (II, Ex. 1.21e) that
Hi(X,O) = 0 for all i > 0 .

(Note that the first sentence of (II Ex. 1.21) says that we’re working with varieties
over an algebraically closed field k , as defined in Chapter I, so X = P1 has no generic
point.)

By (II Ex. 1.16a), K is flasque. We need to show that K /O is flasque. By (II
Ex. 1.21d), K /O is isomorphic to the infinite direct sum

∑
P∈X iP (IP ) , where IP is

the sheaf K/OP at P and iP (IP ) is the corresponding skyscraper sheaf.
(It is a general fact of category theory that if a category has finite coproducts

and direct limits, then it has infinite coproducts, equal to the direct limit of finite
subproducts. So, by (II, Ex. 1.9) and (II, Ex. 1.10), infinite direct sums of sheaves
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exist.) Also, by (II, Ex. 1.16d), the sheaves iP (IP ) are flasque. By (II, Ex. 1.9)
and (II, Ex. 1.11), global sections of an infinite direct sum of sheaves on a noetherian
topological space are given by the direct sums of the global sections of the summands
(this can be done for an arbitrary topological space by re-doing (II, Ex. 1.9) for the
infinite case). Therefore, since the direct sum of a family of surjections is again a
surjection, it follows that the direct sum of a family of flasque sheaves is flasque; in
particular, K /O is flasque. Thus 0 −→ O −→ K −→ K /O −→ 0 is a flasque resolution
of O .

By Propositions 2.5 and 1.2A, the cohomology of O is then given by the cohomol-
ogy of the complex

0 −→ Γ(X,K )
α−→ Γ(X,K /O) −→ 0 .

By (II, Ex. 1.21e), H1(X,O) = cokerα = 0 , and all higher cohomology groups are
obviously zero.

3. (10 points) (Vakil 23.2.J,K)

(a). Let Q be an injective abelian group, and let A be a ring. Show that
HomZ(A,Q) is an injective A-module. Hint: First describe the A-module
structure on HomZ(A,Q) . You will only use the fact that Z is a ring, and
that A is an algebra over that ring.

(b). Show that Mod(A) has enough injectives. Hint: Let M be an A-module.
Find an inclusion M ↪→ Q of abelian groups, such that Q is an injective
abelian group. Describe a sequence

M ↪→ HomZ(A,M) ↪→ HomZ(A,Q)

of inclusions of A-modules. (The A-module structure on HomZ(A,M) is via
the action of A on the left argument A , not on the right argument M .)

(a). Following the hint, we define an A-module structure on HomZ(A,Q) as follows.
Let a ∈ A and φ ∈ HomZ(A,Q) . Then aφ is the map b 7→ φ(ab) ; i.e., the action is
on the left argument A , not on the right argument Q (as in the hint for (b)).

Now the key to this part is to note that for all A-modules M there is an isomor-
phism

HomA(M,HomZ(A,Q))
∼−→ HomZ(M,Q) ,

given by
ψ ∈ HomA(M,HomZ(A,Q)) 7→ (m 7→ ψ(m)(1)) .

Indeed, this is clearly additive.
To see that it is injective, let ψ be an element of the kernel. Then ψ(m)(1) = 0

for all m ∈M ; therefore ψ(m)(a) = 0 for all a ∈ A and all m because

ψ(m)(a) = (aψ)(m)(1) = ψ(am)(1) = 0 ,
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and this implies that ψ(m) = 0 for all m , so ψ = 0 .
To see that is is surjective, let φ ∈ HomZ(M,Q) . Define ψ : M → HomZ(A,Q)

by m 7→ (a 7→ φ(am)) . This lies in HomA(M,HomZ(A,Q)) because

ψ(a′m) = (a 7→ φ(aa′m)) = a′(a 7→ φ(am)) = a′(ψ(m)) .

Now let 0 −→ M ′ −→ M be an exact sequence of A-modules. It is also an exact
sequence of abelian groups, so the induced map HomZ(M,Q) −→ HomZ(M ′, Q) is
surjective since Q is an injective abelian group. By the above isomorphism,

HomA(M,HomZ(A,Q)) −→ HomA(M ′,HomZ(A,Q))

is also surjective, and this gives that HomZ(A,Q) is an injective A-module.

(b). Following the hint, the second map is an injection because M → Q is an injection,
and it is clear that it is a map of A-modules.

Let the first map be φ : m 7→ (a 7→ am) . It is an injection because if φ(m) = 0
then φ(m)(1) = m must be zero, and it is an A-module homomorphism because
φ(a′m) = (a 7→ aa′m) = a′(a 7→ am) = a′φ(m) .

Thus Mod(A) has enough injectives.


