
Math 256B. Solutions to Homework 3

1. (20 points) Hartshorne III Ex. 2.3: Cohomology with Supports (Grothendieck [7]). Let
X be a topological space, let Y be a closed subset, and let F be a sheaf of abelian
groups. Let ΓY (X,F ) denote the group of sections of F with supports in Y (II,
Ex. 1.20).

(a). Show that ΓY (X, ·) is a left exact functor from Ab(X) to Ab .
We denote the right derived functors of ΓY (X, ·) by Hi

Y (X, ·) . They
are the cohomology groups of X with supports in Y , and coefficients in a
given sheaf.

(b). If 0 −→ F ′ −→ F −→ F ′′ −→ 0 is an exact sequence of sheaves with F ′

flasque, show that

0 −→ ΓY (X,F ′) −→ ΓY (X,F ) −→ ΓY (X,F ′′) −→ 0

is exact.
(c). Show that if F is flasque, then Hi

Y (X,F ) = 0 for all i > 0 .
(d). If F is flasque, show that the sequence

0 −→ ΓY (X,F ) −→ Γ(X,F ) −→ Γ(X − Y,F ) −→ 0

is exact.
(e). Let U = X − Y . Show that for any F , there is a long exact sequence of

cohomology groups

0 −→ H0
Y (X,F ) −→ H0(X,F ) −→ H0(U,F

∣∣
U

) −→
−→ H1

Y (X,F ) −→ H1(X,F ) −→ H1(U,F
∣∣
U

) −→
−→ H2

Y (X,F ) −→ . . . .

(f). Excision. Let V be an open subset of X containing Y . Then there are
natural functorial isomorphisms, for all i and F ,

Hi
Y (X,F ) ∼= Hi

Y (V,F
∣∣
V

) .

(a). Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of sheaves on X . Then we
have a commutative diagram

0 −−−−→ Γ(X,F ′) −−−−→ Γ(X,F ) −−−−→ Γ(X,F ′′)

∪ ∪ ∪

0 −−−−→ ΓY (X,F ′)
α−−−−→ ΓY (X,F )

β−−−−→ ΓY (X,F ′′)
1
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in which the top row is exact. Immediately this gives that α is injective and that
β ◦ α = 0 , so kerβ ⊇ imα . Regarding F ′ as a subsheaf of F , we have

ΓY (X,F ′) = Γ(X,F ′) ∩ ΓY (X,F ) ,

so any s ∈ kerβ lies in Γ(X,F ′) and in ΓY (X,F ) , hence in ΓY (X,F ′) . Therefore
the sequence is exact.

(b). By part (a), we only need to show that the map ΓY (X,F ) → ΓY (X,F ′′) is
surjective. Let s′′ ∈ ΓY (X,F ′′) . By (II Ex. 1.16b), there is a section s ∈ Γ(X,F )
mapping to s′′ ∈ Γ(X,F ′′) . Now s′′

∣∣
X\Y = 0 , so s

∣∣
X\Y lies in F ′ . Since F ′ is

flasque, there is a t ∈ F ′(X) such that t
∣∣
X\Y = s

∣∣
X\Y . Noting that t is taken to

0 in F ′′ , we have that s − t also maps to s′′ in F ′′ . Also, (s − t)
∣∣
X\Y = 0 , so

s− t ∈ ΓY (X,F ) . Thus β is surjective, as was to be shown.

(c). The proof of Proposition 2.5 carries over almost verbatim, using part (b) in place
of (II Ex. 1.16b).

(d). The first map is injective by definition, and the second is surjective by flasqueness.
If s ∈ ΓY (X,F ) , then s

∣∣
X\Y = 0 since all stalks are 0 , so the kernel of the second

map contains the image of the first map. Conversely, if s is in the kernel of the second
map, then s

∣∣
X\Y = 0 , so s ∈ ΓY (X,F ) .

Or: Since F is flasque, the sequence 0 −→ H 0
Y (F ) −→ F −→ j∗(F

∣∣
U

) −→ 0 is

exact by (II, Ex. 1.20), where U = X \Y and j : U → X is the inclusion map. Taking
global sections gives that 0 −→ ΓY (X,F ) −→ Γ(X,F ) −→ Γ(X \ Y,F ) −→ 0 is exact,
except possibly at Γ(X \ Y,F ) . But, since F is flasque, Γ(X,F )→ Γ(X \ Y,F ) is
surjective, and we are done.

(e). Let 0 −→ F −→ I · be a flasque resolution of F , and consider the commutative
diagram

0 0 0y y y
0 −−−−→ ΓY (X,I 0) −−−−→ Γ(X,I 0) −−−−→ Γ(U,I 0) −−−−→ 0y y y
0 −−−−→ ΓY (X,I 1) −−−−→ Γ(X,I 1) −−−−→ Γ(U,I 1) −−−−→ 0 .y y y

...
...

...

By part (d), the rows are exact. The columns are complexes. By part (c) and
Prop. 1.2A, the cohomology of the first two columns give H∗Y (X,F ) and H∗(X,F ) ,
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respectively. Since flasqueness of sheaves and exactness of sequences of sheaves is pre-
served under restricting to an open subset, the cohomology of the third column is
H∗(U,F

∣∣
U

) . The desired long exact sequence then follows by applying the Snake
Lemma.

(f ). First, we claim that the restriction map Γ(X,F ) → Γ(V,F
∣∣
V

) induces an iso-

morphism α : ΓY (X,F )
∼→ ΓY (V,F ) = ΓY (V,F

∣∣
V

) . First of all, it is clear that

if s ∈ ΓY (X,F ) , then s
∣∣
V
∈ ΓY (V,F ) . Secondly, if s ∈ kerα , then s

∣∣
V

= 0 ;

also, s
∣∣
X\Y = 0 since s ∈ ΓY ; therefore s = 0 and thus α is injective. Finally, let

t ∈ ΓY (V,F ) . Since t
∣∣
V \Y = 0 , we can glue t with the section 0 ∈ Γ(X \ Y,F ) to

give a section s ∈ Γ(X,F ) . Clearly s
∣∣
X\Y = 0 , so s ∈ ΓY (X,F ) ; moreover α(s) = t

by construction, so α is surjective. This proves the claim.
Now let 0 −→ F −→ I · be a flasque resolution of F , so, by part (c) and Prop.

1.2A,
H∗Y (X,F ) = h∗(ΓY (X,I ·)) .

But also 0 −→ F
∣∣
V
−→ I ·

∣∣
V

is a flasque resolution of F
∣∣
V

, so

H∗Y (V,F
∣∣
V

) = h∗(ΓY (V,I ·
∣∣
V

)) .

By the claim, we then have

H∗Y (X,F ) = h∗(ΓY (X,I ·)) ∼= h∗(ΓY (V,I ·
∣∣
V

)) = H∗Y (V,F
∣∣
V

) .

Moreover, the isomorphism comes from restriction maps, so it is natural and functorial.

2. (10 points) Hartshorne III Ex. 3.1: Let X be a noetherian scheme. Show that X is
affine if and only if Xred (II, Ex. 2.3) is affine. [Hint: Use (3.7), and for any coherent
sheaf F on X , consider the filtration F ⊇ N ·F ⊇ N 2 ·F ⊇ . . . , where N is the
sheaf of nilpotent elements on X .]

First note that Xred is a closed subscheme of X ; hence if X is affine then so is
Xred (by II Ex. 3.11b or the proof of II 5.9).

To show the converse, let F be a coherent sheaf on X , let N be the sheaf of
nilpotent elements on X , and for all i ∈ N let Fi = N iF/N i+1F . Then each Fi

comes from a sheaf on Xred ; hence, by (3.7), Hp(Xred,Fi) = 0 for all p > 0 . By
Lemma 2.10, we therefore have Hp(X,Fi) = 0 for all p > 0 .

For sufficiently large m we have N m+1 = 0 (by an argument using quasi-
compactness and finite generation of the ideal of nilpotents in a noetherian ring), hence
N m+1F = 0 , so Hp(X,N m+1F ) = 0 for all p > 0 . By considering the long exact
sequence in cohomology attached to the short exact sequence

0 −→ N m+1F −→ N mF −→ Fm −→ 0 ,

it follows that Hp(X,N mF ) = 0 for all p > 0 ; by descending induction and a similar
argument, we obtain that Hp(X,N iF ) = 0 for all p > 0 and all 0 ≤ i ≤ m . Thus
Hp(X,F ) = 0 for all p > 0 , so by (3.7) it follows that X is affine.
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3(nc). (10 points) Hartshorne III Ex. 3.2: Let X be a reduced noetherian scheme. Show that
X is affine if and only if each irreducible component is affine.

In one direction it’s easy: If X is affine, then all of its irreducible components are
also affine, since they are closed subschemes (II Ex. 3.11b).

To show the converse, we start with two lemmas.

Lemma. Let X be a noetherian scheme, let Z be a closed subscheme of X with
associated ideal sheaf I , and suppose that Z is affine. Let F be a quasi-coherent
sheaf on X that is killed by I . Then Hi(X,F ) = 0 for all i > 0 .

Proof. First we claim that there is a quasi-coherent sheaf G on Z such that F ∼= i∗G ,
where i : Z → X is the inclusion map. Indeed, in the affine case X = SpecA , we have

I ∼= Ĩ and F ∼= M̃ , where I is an ideal in A and M is an A-module. Moreover,
Y = Spec(A/I) and IM = 0 . Therefore M has a well-defined structure as a module

over A/I , and we can let G = M̃ using this structure. Then F ∼= i∗G by (II,
Prop. 5.2d).

The above construction commutes with localization consisting of passing from

SpecA to SpecAf for any f ∈ A ; therefore the sheaves M̃ as above glue to give
a well-defined quasi-coherent sheaf G on Z such that F ∼= i∗G (as above), by Vakil
Thm. 13.3.2c.

Since Z is noetherian, Lemma 2.10 and Theorem 3.5 then give

Hi(X,F ) = Hi(Z,G ) = 0 for all i > 0 . �

Lemma. Let X be a reduced noetherian scheme. Let X1 and X2 be reduced closed
subschemes of X such that X = X1 ∪ X2 (topologically). If X1 and X2 are
affine, then so is X .

Proof. Let I1 and I2 be the sheaves of ideals of X1 and X2 , respectively. Then
I1I2 ⊆ I1 ∩I2 = 0 , since Ii ∩I2 is associated to a closed subscheme of X whose
underlying topological space is all of X , and since X is reduced.

Let F be a quasi-coherent sheaf on X . Consider the exact sequence

0 −→ I1F −→ F −→ F/I1F −→ 0 .

Since I1F and F/I1F are killed by I2 and I1 , respectively, they are acyclic by
the previous lemma. The long exact sequence in cohomology then implies that F is
acyclic, so X is affine by Theorem 3.7. �

Now let X be a reduced noetherian scheme, and let X1, . . . , Xn be its irreducible
components (with reduced induced subscheme structure). We want to show that if
X1, . . . , Xn are all affine, then X is affine. If n ≤ 1 then this is trivial. For larger
values of n this follows from the above lemma by induction.


