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Math 256B. Solutions to Homework 4

(10 points) Hartshorne IIT Ex. 4.1: Let f: X — Y be an affine morphism of noetherian
separated schemes (II, Ex. 5.17). Show that for any quasi-coherent sheaf .# on X,
there are natural isomorphisms for all ¢ > 0,

H'(X,7)= H'(Y, [.7).

[Hint: Use (II, 5.8).]

Let ¥ = (V;)ier be an open affine cover of Y, and let Z = (U;);cr be the
corresponding open cover of X, with U; = f~1(V;) for all i. Since f is an affine
morphism, % 1is an open affine cover of X (II Ex. 5.17a). Since X is noetherian,
f«Z is quasi-coherent by (I 5.8¢c). Therefore, by Theorem 4.5 it will suffice to construct
natural isomorphisms

HY (% ,.F) = HP(V, f.7)

for all p e N.
But now

o 7)) = 1] P Viei) = [ #WUis,) = CP(%, )

o< <ip o< <ip

(where the middle equality holds by definition of the direct image sheaf), and the
coboundary maps obviously correspond since restrictions on .# and f..%# are compat-
ible. Thus

HY (% ,.F) = H°(V, f.F)

for all p e N.
These maps are natural because the isomorphism C (%, %) = C'(V, f«.F) is
natural.

(10 points) Hartshorne ITI Ex. 4.3: Let X = A7 = Spec k[z,y], and let U = X—{(0,0)}.
Using a suitable cover of U by open affines, show that H!(U, €};) is isomorphic to the
k-vector space spanned by {z'y’ : 4,5 < 0}. In particular, it is infinite-dimensional.
(Using (3.5), this provides another proof that U is not affine—see (I, Ex. 3.6).)

Let % = {Uy,U,}, where
Uy = D(z) = Speck[x,y], and Ui = D(y) = Speckz,yly -

This is an open affine cover of U, so by Theorem 4.5, H'(U, Oy) = HY (%, 0y).
Computing Cech cohomology, we have

CU %, 0y) = Oy(Up) x Oy(Uyr) = E[z, 9], x klz,y]y
1



2

and
CU% , Ov) = Ou(Uo NUL) = k2, ylay
with the map d°: C°(%, Oy) — CY (%, Oy) given by (f,g) — f —g. We then have

ﬁl(%, Oy) = coker d® . As vector spaces over k, we have

Kz, yley = @D k- 2’y

i,jEL
and
imd’ = @ k-x'y? + @ k-x'y,
1,JE€Z 1,J€EL
j=>0 >0

so the cokernel has basis
{1 0,7 €Z and (i,7) ¢ (ZxN)U(Nx Z)} = {2y’ : 4,7 <0},

as was to be shown. (Note that this implies that U is not affine, since if U was affine
it would contradict Theorem 3.5. This is in addition to the reason given in the problem
statement. )

(15 points) Hartshorne III Ex. 4.5: For any ringed space (X,0x), let PicX be
the group of isomorphism classes of invertible sheaves (II, §6). Show that Pic X =
HY (X, 0%), where 0% denotes the sheaf whose sections over an open set U are the
units in the ring I'(U, Ox), with multiplication as the group operation. [Hint: For
any invertible sheaf . on X, cover X by open sets U; on which £ is free, and fix
isomorphisms ¢;: Oy, — £ ‘Ui . Then on U; NUj, we get an isomorphism d)i_l ° @;
of Oy,~u; with itself. These isomorphisms give an element of H'(U4, 0%). Now use
(Ex. 4.4).]

First, fix an open cover U = (U;);er and let Gy be the set of pairs (L, (¢;)icr)
with . € PicX and ¢;: Oy, — £ ’ . an isomorphism for all 7. Define a binary
operation x: Gy X Gy — Gy by

(L, (¢3)) * (M, (i) = (L @ M, (Di % i)

where ¢; x1); is the composition

bi * i Oy, = Oy, ® Oy, 225 (L @ M)

U

With this operation, Gy becomes a group, with identity element (Ox, (¢;)), where ¢;

is the identity map on Oy, . Also, (£, (¢;)) — £ defines a group homomorphism
(Dui Gu — Pic X .

The kernel of this map is obviously the set of pairs (Ox, (¢;)) with ¢; € Aut Oy,
for all 7. Here and in what follows, “Aut” always refers to automorphism as sheaves of
Ox-modules (or Oy,-modules, as appropriate). The image of ®g is the set of all line
sheaves ¥ whose restrictions to U; are trivial for all 7.
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Lemma. Let (X,0x) be a ringed space. Then the map px: AutOx — I'(X,O0x)*
given by ¢ — ¢(1) is a group isomorphism.

Proof. An Ox-module homomorphism Ox — COx is determined by its action on a
generator, i.e., 1, s0 px is injective. It is also obviously a group homomorphism, since

po takes 1 to ¢(1(1)) = ¢(p(1) - 1) = (1) - ¢(1). Finally, given u € I'(X, Ox)*,
the map ¢: Ox — Ox given by s — u}U-s for sections s € Ox(U) is an Ox-module
homomorphism with inverse given by s — u =} }U -8, 80 it lies in Aut Ox and therefore
px s surjective. (Il

Define a function
@u: Gu — Cl(ﬂ, ﬁ;})
by
(Ou(Z, (81)ap = Puos (9a' |y, © D8ly.,) € Ox(Uap)™ = O% (Uap)

for all o < B in I. This is clearly a group homomorphism.
If (Z,(¢:)) € Gy and a < B <~ in I, then the “cocycle condition”

by 0y = (5" 0 dp) o (65" 0 dy)

holds on Uag, , so

@u(za (gbi))a’y = @Ll(ga (d’i))a[o’ : @il("%v ((pl))ﬁV

holds on U,g, and therefore d'(Oy(Z,(4:))) = 0; ie., Oy(Z,(¢:)) is a cocycle
in C'(4, 0%). Conversely, given a cocycle (cq5) € C(8, O%), the automorphisms
oap € Aut Oy, satisfy the condition 04 = 0gy 0 0as in Uaspy, so by (II Ex. 1.22)
they glue to give a line sheaf .# for which a trivialization in Gy maps to (oag)-
Therefore ©g maps onto the set of cocycles. Thus it defines a surjective map

Uy Gy — HY(YU, 0%) .

We now claim that ker ®y = ker Wy . Indeed, first let (£, (¢;)) € ker Ug(. Then
O(Z,(¢:)) is a coboundary in C'(4, 0%), so there is an element

u = (Uq)acr € CO(M, 79

such that ¢5'o¢s =wuy'-ug in Uy for all a < B in I. Therefore uglqﬁg = uglgq

for all o < 3, so these maps glue to give an isomorphism Oy — .Z. Thus (%, (¢;))
lies in ker @y .

Conversely, if (£, (¢;)) € ker @y then there is an isomorphism v¢: ¥ — Ox .
Then, for all 7, w}UZ_ o ¢; lies in Aut Oy, , and therefore corresponds to u; € 0% (U;) .

Moreover, for all o < 8 in I, ¢,'odg = (Y|, o¢a) "o (¢‘UB o ¢g) is multiplication
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by uglug on U,s. Thus ©(Z,(¢;)) is a coboundary, and therefore (&, (¢;)) lies in
ker Uy .
Since the kernels of ®¢ and Wy coincide, they define an isomorphism

gl(ﬂ, ﬁ;}) l) imfbu .

Now let U = (V})cs be a refinement of 4l and let A: J — I be a function sat-
isfying V; C Uy(;) for all j € J. Define a map Gy — Gy by (Z,(¢:)) — (£, (¥5)),
where 9; = ¢>\(j)‘v- for all j € J. We then have a diagram

I:Il(il, 0%) <— Gy

N

Pic X .

/

HY(T,0%) <— Gu

The triangle on the right obviously commutes, and the square on the left commutes
because the definition of © is compatible with restriction. This gives an isomorphism

li_n;Hl(il, 0%) — limim @y .

8t 81
Since the groups im &y are all subgroups of Pic X and since the maps in the directed
system are all inclusion maps, this direct limit is really a union. Moreover, this union

is all of Pic X since by definition a line sheaf has a trivializing open cover. Thus, by
Ex. 4.4, we have an isomorphism

H'(X,0%) S limH' (U4, 0%) = Pic X,
it

as was to be shown.



