
Math 256B. Solutions to Homework 4

1(nc). (10 points) Hartshorne III Ex. 4.1: Let f : X → Y be an affine morphism of noetherian
separated schemes (II, Ex. 5.17). Show that for any quasi-coherent sheaf F on X ,
there are natural isomorphisms for all i ≥ 0 ,

Hi(X,F ) ∼= Hi(Y, f∗F ) .

[Hint: Use (II, 5.8).]

Let V = (Vi)i∈I be an open affine cover of Y , and let U = (Ui)i∈I be the
corresponding open cover of X , with Ui = f−1(Vi) for all i . Since f is an affine
morphism, U is an open affine cover of X (II Ex. 5.17a). Since X is noetherian,
f∗F is quasi-coherent by (II 5.8c). Therefore, by Theorem 4.5 it will suffice to construct
natural isomorphisms

Ȟp(U ,F ) ∼= Ȟp(V , f∗F )

for all p ∈ N .
But now

Cp(V , f∗F ) =
∏

i0<···<ip

(f∗F )(Vi0...ip) =
∏

i0<···<ip

F (Ui0...ip) = Cp(U ,F )

(where the middle equality holds by definition of the direct image sheaf), and the
coboundary maps obviously correspond since restrictions on F and f∗F are compat-
ible. Thus

Ȟp(U ,F ) ∼= Ȟp(V , f∗F )

for all p ∈ N .
These maps are natural because the isomorphism C·(U ,F ) ∼= C·(V , f∗F ) is

natural.

2. (10 points) Hartshorne III Ex. 4.3: Let X = A2
k = Spec k[x, y], and let U = X−{(0, 0)}.

Using a suitable cover of U by open affines, show that H1(U,OU ) is isomorphic to the
k-vector space spanned by {xiyj : i, j < 0} . In particular, it is infinite-dimensional.
(Using (3.5), this provides another proof that U is not affine—see (I, Ex. 3.6).)

Let U = {U0, U1} , where

U0 = D(x) = Spec k[x, y]x and U1 = D(y) = Spec k[x, y]y .

This is an open affine cover of U , so by Theorem 4.5, H1(U,OU ) ∼= Ȟ1(U ,OU ) .
Computing Čech cohomology, we have

C0(U ,OU ) = OU (U0)× OU (U1) = k[x, y]x × k[x, y]y
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and
C1(U ,OU ) = OU (U0 ∩ U1) = k[x, y]xy

with the map d0 : C0(U ,OU ) → C1(U ,OU ) given by (f, g) 7→ f − g . We then have
Ȟ1(U ,OU ) ∼= coker d0 . As vector spaces over k , we have

k[x, y]xy =
⊕
i,j∈Z

k · xiyj

and
im d0 =

⊕
i,j∈Z
j≥0

k · xiyj +
⊕
i,j∈Z
i≥0

k · xiyj ,

so the cokernel has basis

{xiyj : i, j ∈ Z and (i, j) /∈ (Z× N) ∪ (N× Z) } = {xiyj : i, j < 0} ,

as was to be shown. (Note that this implies that U is not affine, since if U was affine
it would contradict Theorem 3.5. This is in addition to the reason given in the problem
statement.)

3. (15 points) Hartshorne III Ex. 4.5: For any ringed space (X,OX) , let PicX be
the group of isomorphism classes of invertible sheaves (II, § 6). Show that PicX ∼=
H1(X,O∗X) , where O∗X denotes the sheaf whose sections over an open set U are the
units in the ring Γ(U,OX) , with multiplication as the group operation. [Hint: For
any invertible sheaf L on X , cover X by open sets Ui on which L is free, and fix
isomorphisms φi : OUi

∼→ L
∣∣
Ui

. Then on Ui ∩ Uj , we get an isomorphism φ−1i ◦ φj
of OUi∩Uj with itself. These isomorphisms give an element of Ȟ1(U,O∗X) . Now use
(Ex. 4.4).]

First, fix an open cover U = (Ui)i∈I and let GU be the set of pairs (L , (φi)i∈I)

with L ∈ PicX and φi : OUi
∼−→ L

∣∣
Ui

an isomorphism for all i . Define a binary

operation ∗ : GU ×GU → GU by

(L , (φi)) ∗ (M , (ψi)) = (L ⊗M , (φi ? ψi)) ,

where φi ? ψi is the composition

φi ? ψi : OUi
∼−→ OUi ⊗ OUi

φi⊗ψi−−−−→ (L ⊗M )
∣∣
Ui
.

With this operation, GU becomes a group, with identity element (OX , (φi)) , where φi
is the identity map on OUi . Also, (L , (φi)) 7→ L defines a group homomorphism

ΦU : GU → PicX .

The kernel of this map is obviously the set of pairs (OX , (φi)) with φi ∈ Aut OUi
for all i . Here and in what follows, “Aut” always refers to automorphism as sheaves of
OX -modules (or OUi-modules, as appropriate). The image of ΦU is the set of all line
sheaves L whose restrictions to Ui are trivial for all i .
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Lemma. Let (X,OX) be a ringed space. Then the map ρX : Aut OX −→ Γ(X,OX)∗

given by φ 7→ φ(1) is a group isomorphism.

Proof. An OX -module homomorphism OX → OX is determined by its action on a
generator, i.e., 1 , so ρX is injective. It is also obviously a group homomorphism, since
φ ◦ ψ takes 1 to φ(ψ(1)) = φ(ψ(1) · 1) = ψ(1) · φ(1) . Finally, given u ∈ Γ(X,OX)∗ ,
the map φ : OX → OX given by s 7→ u

∣∣
U
· s for sections s ∈ OX(U) is an OX -module

homomorphism with inverse given by s 7→ u−1
∣∣
U
·s , so it lies in Aut OX and therefore

ρX is surjective. �

Define a function
ΘU : GU −→ C1(U,O∗X)

by
(ΘU(L , (φi)))αβ = ρUαβ

(
φ−1α

∣∣
Uαβ
◦ φβ

∣∣
Uαβ

)
∈ OX(Uαβ)∗ = O∗X(Uαβ)

for all α < β in I . This is clearly a group homomorphism.
If (L , (φi)) ∈ GU and α < β < γ in I , then the “cocycle condition”

φ−1α ◦ φγ = (φ−1α ◦ φβ) ◦ (φ−1β ◦ φγ)

holds on Uαβγ , so

ΘU(L , (φi))αγ = ΘU(L , (φi))αβ ·ΘU(L , (φi))βγ

holds on Uαβγ and therefore d1(ΘU(L , (φi))) = 0 ; i.e., ΘU(L , (φi)) is a cocycle
in C1(U,O∗X) . Conversely, given a cocycle (σαβ) ∈ C1(U,O∗X) , the automorphisms
σαβ ∈ Aut OUαβ satisfy the condition σαγ = σβγ ◦ σαβ in Uαβγ , so by (II Ex. 1.22)
they glue to give a line sheaf L for which a trivialization in GU maps to (σαβ) .
Therefore ΘU maps onto the set of cocycles. Thus it defines a surjective map

ΨU : GU −→ Ȟ1(U,O∗X) .

We now claim that ker ΦU = ker ΨU . Indeed, first let (L , (φi)) ∈ ker ΨU . Then
Θ(L , (φi)) is a coboundary in C1(U,O∗X) , so there is an element

u = (uα)α∈I ∈ C0(U,O∗X)

such that φ−1α ◦ φβ = u−1α · uβ in Uαβ for all α < β in I . Therefore u−1β φβ = u−1α φα

for all α < β , so these maps glue to give an isomorphism OX
∼−→ L . Thus (L , (φi))

lies in ker ΦU .
Conversely, if (L , (φi)) ∈ ker ΦU then there is an isomorphism ψ : L

∼−→ OX .
Then, for all i , ψ

∣∣
Ui
◦ φi lies in Aut OUi , and therefore corresponds to ui ∈ O∗X(Ui) .

Moreover, for all α < β in I , φ−1α ◦φβ = (ψ
∣∣
Uα
◦φα)−1 ◦ (ψ

∣∣
Uβ
◦φβ) is multiplication
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by u−1α uβ on Uαβ . Thus Θ(L , (φi)) is a coboundary, and therefore (L , (φi)) lies in
ker ΨU .

Since the kernels of ΦU and ΨU coincide, they define an isomorphism

Ȟ1(U,O∗X)
∼−→ im ΦU .

Now let V = (Vj)j∈J be a refinement of U and let λ : J → I be a function sat-
isfying Vj ⊆ Uλ(j) for all j ∈ J . Define a map GU → GV by (L , (φi)) 7→ (L , (ψj)) ,

where ψj = φλ(j)
∣∣
Vj

for all j ∈ J . We then have a diagram

Ȟ1(U,O∗X)

��

GU
oo

''OO
OOO

OO

��

PicX .

Ȟ1(V,O∗X) GV
oo

77ooooooo

The triangle on the right obviously commutes, and the square on the left commutes
because the definition of Θ is compatible with restriction. This gives an isomorphism

lim−→
U

Ȟ1(U,O∗X)
∼−→ lim−→

U

im ΦU .

Since the groups im ΦU are all subgroups of PicX and since the maps in the directed
system are all inclusion maps, this direct limit is really a union. Moreover, this union
is all of PicX since by definition a line sheaf has a trivializing open cover. Thus, by
Ex. 4.4, we have an isomorphism

H1(X,O∗X)
∼−→ lim−→

U

Ȟ1(U,O∗X)
∼−→ PicX ,

as was to be shown.


