Math 256B. Solutions to Homework 4

1(NC). (10 points) Hartshorne III Ex. 4.1: Let $f: X \to Y$ be an affine morphism of noetherian separated schemes (II, Ex. 5.17). Show that for any quasi-coherent sheaf \mathscr{F} on X, there are natural isomorphisms for all $i \geq 0$,

$$H^i(X,\mathscr{F}) \cong H^i(Y, f_*\mathscr{F})$$
.

[*Hint:* Use (II, 5.8).]

Let $\mathscr{V} = (V_i)_{i \in I}$ be an open affine cover of Y, and let $\mathscr{U} = (U_i)_{i \in I}$ be the corresponding open cover of X, with $U_i = f^{-1}(V_i)$ for all i. Since f is an affine morphism, \mathscr{U} is an open affine cover of X (II Ex. 5.17a). Since X is noetherian, $f_*\mathscr{F}$ is quasi-coherent by (II 5.8c). Therefore, by Theorem 4.5 it will suffice to construct natural isomorphisms

$$\check{H}^p(\mathscr{U},\mathscr{F}) \cong \check{H}^p(\mathscr{V}, f_*\mathscr{F})$$

for all $p \in \mathbb{N}$. But now

$$C^{p}(\mathscr{V}, f_{*}\mathscr{F}) = \prod_{i_{0} < \dots < i_{p}} (f_{*}\mathscr{F})(V_{i_{0}\dots i_{p}}) = \prod_{i_{0} < \dots < i_{p}} \mathscr{F}(U_{i_{0}\dots i_{p}}) = C^{p}(\mathscr{U}, \mathscr{F})$$

(where the middle equality holds by definition of the direct image sheaf), and the coboundary maps obviously correspond since restrictions on \mathscr{F} and $f_*\mathscr{F}$ are compatible. Thus

$$\check{H}^p(\mathscr{U},\mathscr{F})\cong\check{H}^p(\mathscr{V},f_*\mathscr{F})$$

for all $p \in \mathbb{N}$.

These maps are natural because the isomorphism $C^{\cdot}(\mathscr{U},\mathscr{F}) \cong C^{\cdot}(\mathscr{V}, f_{*}\mathscr{F})$ is natural.

2. (10 points) Hartshorne III Ex. 4.3: Let $X = \mathbb{A}_k^2 = \operatorname{Spec} k[x, y]$, and let $U = X - \{(0, 0)\}$. Using a suitable cover of U by open affines, show that $H^1(U, \mathcal{O}_U)$ is isomorphic to the k-vector space spanned by $\{x^i y^j : i, j < 0\}$. In particular, it is infinite-dimensional. (Using (3.5), this provides another proof that U is not affine—see (I, Ex. 3.6).)

Let $\mathscr{U} = \{U_0, U_1\}$, where

$$U_0 = D(x) = \operatorname{Spec} k[x, y]_x$$
 and $U_1 = D(y) = \operatorname{Spec} k[x, y]_y$.

This is an open affine cover of U, so by Theorem 4.5, $H^1(U, \mathcal{O}_U) \cong \check{H}^1(\mathscr{U}, \mathcal{O}_U)$. Computing Čech cohomology, we have

$$C^{0}(\mathscr{U}, \mathscr{O}_{U}) = \mathscr{O}_{U}(U_{0}) \times \mathscr{O}_{U}(U_{1}) = k[x, y]_{x} \times k[x, y]_{y}$$
1

and

$$C^1(\mathscr{U}, \mathscr{O}_U) = \mathscr{O}_U(U_0 \cap U_1) = k[x, y]_{xy}$$

with the map $d^0: C^0(\mathscr{U}, \mathscr{O}_U) \to C^1(\mathscr{U}, \mathscr{O}_U)$ given by $(f, g) \mapsto f - g$. We then have $\check{H}^1(\mathscr{U}, \mathscr{O}_U) \cong \operatorname{coker} d^0$. As vector spaces over k, we have

$$k[x,y]_{xy} = \bigoplus_{i,j \in \mathbb{Z}} k \cdot x^i y^j$$

and

$$\operatorname{im} d^{0} = \bigoplus_{\substack{i,j \in \mathbb{Z} \\ j \ge 0}} k \cdot x^{i} y^{j} + \bigoplus_{\substack{i,j \in \mathbb{Z} \\ i \ge 0}} k \cdot x^{i} y^{j} ,$$

so the cokernel has basis

$$\{x^i y^j : i, j \in \mathbb{Z} \text{ and } (i, j) \notin (\mathbb{Z} \times \mathbb{N}) \cup (\mathbb{N} \times \mathbb{Z}) \} = \{x^i y^j : i, j < 0\} ,$$

as was to be shown. (Note that this implies that U is not affine, since if U was affine it would contradict Theorem 3.5. This is in addition to the reason given in the problem statement.)

3. (15 points) Hartshorne III Ex. 4.5: For any ringed space (X, \mathscr{O}_X) , let $\operatorname{Pic} X$ be the group of isomorphism classes of invertible sheaves (II, §6). Show that $\operatorname{Pic} X \cong$ $H^1(X, \mathscr{O}_X^*)$, where \mathscr{O}_X^* denotes the sheaf whose sections over an open set U are the units in the ring $\Gamma(U, \mathscr{O}_X)$, with multiplication as the group operation. [*Hint:* For any invertible sheaf \mathscr{L} on X, cover X by open sets U_i on which \mathscr{L} is free, and fix isomorphisms $\phi_i \colon \mathscr{O}_{U_i} \xrightarrow{\sim} \mathscr{L}|_{U_i}$. Then on $U_i \cap U_j$, we get an isomorphism $\phi_i^{-1} \circ \phi_j$ of $\mathscr{O}_{U_i \cap U_j}$ with itself. These isomorphisms give an element of $\check{H}^1(\mathfrak{U}, \mathscr{O}_X^*)$. Now use (Ex. 4.4).]

First, fix an open cover $\mathfrak{U} = (U_i)_{i \in I}$ and let $G_{\mathfrak{U}}$ be the set of pairs $(\mathscr{L}, (\phi_i)_{i \in I})$ with $\mathscr{L} \in \operatorname{Pic} X$ and $\phi_i \colon \mathscr{O}_{U_i} \xrightarrow{\sim} \mathscr{L}|_{U_i}$ an isomorphism for all i. Define a binary operation $* : G_{\mathfrak{U}} \times G_{\mathfrak{U}} \to G_{\mathfrak{U}}$ by

$$(\mathscr{L}, (\phi_i)) * (\mathscr{M}, (\psi_i)) = (\mathscr{L} \otimes \mathscr{M}, (\phi_i \star \psi_i)),$$

where $\phi_i \star \psi_i$ is the composition

$$\phi_i \star \psi_i \colon \mathscr{O}_{U_i} \xrightarrow{\sim} \mathscr{O}_{U_i} \otimes \mathscr{O}_{U_i} \xrightarrow{\phi_i \otimes \psi_i} (\mathscr{L} \otimes \mathscr{M}) \Big|_{U_i}$$

With this operation, $G_{\mathfrak{U}}$ becomes a group, with identity element $(\mathscr{O}_X, (\phi_i))$, where ϕ_i is the identity map on \mathscr{O}_{U_i} . Also, $(\mathscr{L}, (\phi_i)) \mapsto \mathscr{L}$ defines a group homomorphism

$$\Phi_{\mathfrak{U}}\colon G_{\mathfrak{U}}\to \operatorname{Pic} X \ .$$

The kernel of this map is obviously the set of pairs $(\mathcal{O}_X, (\phi_i))$ with $\phi_i \in \operatorname{Aut} \mathcal{O}_{U_i}$ for all i. Here and in what follows, "Aut" always refers to automorphism as sheaves of \mathcal{O}_X -modules (or \mathcal{O}_{U_i} -modules, as appropriate). The image of $\Phi_{\mathfrak{U}}$ is the set of all line sheaves \mathscr{L} whose restrictions to U_i are trivial for all i. **Lemma.** Let (X, \mathscr{O}_X) be a ringed space. Then the map $\rho_X \colon \operatorname{Aut} \mathscr{O}_X \to \Gamma(X, \mathscr{O}_X)^*$ given by $\phi \mapsto \phi(1)$ is a group isomorphism.

Proof. An \mathscr{O}_X -module homomorphism $\mathscr{O}_X \to \mathscr{O}_X$ is determined by its action on a generator, i.e., 1, so ρ_X is injective. It is also obviously a group homomorphism, since $\phi \circ \psi$ takes 1 to $\phi(\psi(1)) = \phi(\psi(1) \cdot 1) = \psi(1) \cdot \phi(1)$. Finally, given $u \in \Gamma(X, \mathscr{O}_X)^*$, the map $\phi \colon \mathscr{O}_X \to \mathscr{O}_X$ given by $s \mapsto u|_U \cdot s$ for sections $s \in \mathscr{O}_X(U)$ is an \mathscr{O}_X -module homomorphism with inverse given by $s \mapsto u^{-1}|_U \cdot s$, so it lies in Aut \mathscr{O}_X and therefore ρ_X is surjective.

Define a function

$$\Theta_{\mathfrak{U}}\colon G_{\mathfrak{U}}\to C^1(\mathfrak{U},\mathscr{O}_X^*)$$

by

$$(\Theta_{\mathfrak{U}}(\mathscr{L},(\phi_i)))_{\alpha\beta} = \rho_{U_{\alpha\beta}} \left(\phi_{\alpha}^{-1} \big|_{U_{\alpha\beta}} \circ \phi_{\beta} \big|_{U_{\alpha\beta}} \right) \in \mathscr{O}_X(U_{\alpha\beta})^* = \mathscr{O}_X^*(U_{\alpha\beta})$$

for all $\alpha < \beta$ in *I*. This is clearly a group homomorphism.

If $(\mathscr{L}, (\phi_i)) \in G_{\mathfrak{U}}$ and $\alpha < \beta < \gamma$ in *I*, then the "cocycle condition"

$$\phi_{\alpha}^{-1} \circ \phi_{\gamma} = (\phi_{\alpha}^{-1} \circ \phi_{\beta}) \circ (\phi_{\beta}^{-1} \circ \phi_{\gamma})$$

holds on $U_{\alpha\beta\gamma}$, so

$$\Theta_{\mathfrak{U}}(\mathscr{L},(\phi_i))_{\alpha\gamma} = \Theta_{\mathfrak{U}}(\mathscr{L},(\phi_i))_{\alpha\beta} \cdot \Theta_{\mathfrak{U}}(\mathscr{L},(\phi_i))_{\beta\gamma}$$

holds on $U_{\alpha\beta\gamma}$ and therefore $d^1(\Theta_{\mathfrak{U}}(\mathscr{L}, (\phi_i))) = 0$; i.e., $\Theta_{\mathfrak{U}}(\mathscr{L}, (\phi_i))$ is a cocycle in $C^1(\mathfrak{U}, \mathscr{O}_X^*)$. Conversely, given a cocycle $(\sigma_{\alpha\beta}) \in C^1(\mathfrak{U}, \mathscr{O}_X^*)$, the automorphisms $\sigma_{\alpha\beta} \in \operatorname{Aut} \mathscr{O}_{U_{\alpha\beta}}$ satisfy the condition $\sigma_{\alpha\gamma} = \sigma_{\beta\gamma} \circ \sigma_{\alpha\beta}$ in $U_{\alpha\beta\gamma}$, so by (II Ex. 1.22) they glue to give a line sheaf \mathscr{L} for which a trivialization in $G_{\mathfrak{U}}$ maps to $(\sigma_{\alpha\beta})$. Therefore $\Theta_{\mathfrak{U}}$ maps onto the set of cocycles. Thus it defines a surjective map

$$\Psi_{\mathfrak{U}} \colon G_{\mathfrak{U}} \to \check{H}^1(\mathfrak{U}, \mathscr{O}_X^*)$$

We now claim that $\ker \Phi_{\mathfrak{U}} = \ker \Psi_{\mathfrak{U}}$. Indeed, first let $(\mathscr{L}, (\phi_i)) \in \ker \Psi_{\mathfrak{U}}$. Then $\Theta(\mathscr{L}, (\phi_i))$ is a coboundary in $C^1(\mathfrak{U}, \mathscr{O}_X^*)$, so there is an element

$$u = (u_{\alpha})_{\alpha \in I} \in C^{0}(\mathfrak{U}, \mathscr{O}_{X}^{*})$$

such that $\phi_{\alpha}^{-1} \circ \phi_{\beta} = u_{\alpha}^{-1} \cdot u_{\beta}$ in $U_{\alpha\beta}$ for all $\alpha < \beta$ in I. Therefore $u_{\beta}^{-1}\phi_{\beta} = u_{\alpha}^{-1}\phi_{\alpha}$ for all $\alpha < \beta$, so these maps glue to give an isomorphism $\mathscr{O}_X \xrightarrow{\sim} \mathscr{L}$. Thus $(\mathscr{L}, (\phi_i))$ lies in ker $\Phi_{\mathfrak{U}}$.

Conversely, if $(\mathscr{L}, (\phi_i)) \in \ker \Phi_{\mathfrak{U}}$ then there is an isomorphism $\psi \colon \mathscr{L} \xrightarrow{\sim} \mathscr{O}_X$. Then, for all $i, \psi |_{U_i} \circ \phi_i$ lies in $\operatorname{Aut} \mathscr{O}_{U_i}$, and therefore corresponds to $u_i \in \mathscr{O}_X^*(U_i)$. Moreover, for all $\alpha < \beta$ in $I, \ \phi_{\alpha}^{-1} \circ \phi_{\beta} = (\psi |_{U_{\alpha}} \circ \phi_{\alpha})^{-1} \circ (\psi |_{U_{\beta}} \circ \phi_{\beta})$ is multiplication by $u_{\alpha}^{-1}u_{\beta}$ on $U_{\alpha\beta}$. Thus $\Theta(\mathscr{L}, (\phi_i))$ is a coboundary, and therefore $(\mathscr{L}, (\phi_i))$ lies in $\ker \Psi_{\mathfrak{U}}$.

Since the kernels of $\Phi_{\mathfrak{U}}$ and $\Psi_{\mathfrak{U}}$ coincide, they define an isomorphism

$$\check{H}^1(\mathfrak{U}, \mathscr{O}_X^*) \xrightarrow{\sim} \operatorname{im} \Phi_{\mathfrak{U}}$$
 .

Now let $\mathfrak{V} = (V_j)_{j \in J}$ be a refinement of \mathfrak{U} and let $\lambda \colon J \to I$ be a function satisfying $V_j \subseteq U_{\lambda(j)}$ for all $j \in J$. Define a map $G_{\mathfrak{U}} \to G_{\mathfrak{V}}$ by $(\mathscr{L}, (\phi_i)) \mapsto (\mathscr{L}, (\psi_j))$, where $\psi_j = \phi_{\lambda(j)}|_{V_i}$ for all $j \in J$. We then have a diagram

The triangle on the right obviously commutes, and the square on the left commutes because the definition of Θ is compatible with restriction. This gives an isomorphism

$$\varinjlim_{\mathfrak{U}} \check{H}^1(\mathfrak{U}, \mathscr{O}_X^*) \xrightarrow{\sim} \varinjlim_{\mathfrak{U}} \operatorname{im} \Phi_{\mathfrak{U}} .$$

Since the groups im $\Phi_{\mathfrak{U}}$ are all subgroups of Pic X and since the maps in the directed system are all inclusion maps, this direct limit is really a union. Moreover, this union is all of Pic X since by definition a line sheaf has a trivializing open cover. Thus, by Ex. 4.4, we have an isomorphism

$$H^1(X, \mathscr{O}_X^*) \xrightarrow{\sim} \varinjlim_{\mathfrak{U}} \check{H}^1(\mathfrak{U}, \mathscr{O}_X^*) \xrightarrow{\sim} \operatorname{Pic} X ,$$

as was to be shown.