Math 256B. Solutions to Homework 7

1. (10 points) Show directly from the definition (without using cohomology) that if $i: X \to Y$ is a closed embedding of noetherian schemes and if \mathscr{L} is an ample line sheaf on Y, then the line sheaf $i^*\mathscr{L}$ is ample on X.

Let \mathscr{F} be a coherent sheaf on X. Then, by II, Ex. 5.5, $i_*\mathscr{F}$ is coherent, so $i_*\mathscr{F}\otimes\mathscr{L}^n$ is generated by global sections for sufficiently large n. But, by II, Ex. 5.1d, $i_*\mathscr{F}\otimes\mathscr{L}^n\cong i_*(\mathscr{F}\otimes i^*\mathscr{L}^n)$. Since i_* induces an isomorphism

$$\Gamma(X,\mathscr{F}\otimes i^*\mathscr{L}^n)\xrightarrow{\sim} \Gamma(Y,i_*(\mathscr{F}\otimes i^*\mathscr{L}^n))\ ,$$

and since i_* induces isomorphisms on stalks (II, Ex. 1.19a), it follows that $\mathscr{F} \otimes i^* \mathscr{L}^n$ is generated by global sections for all sufficiently large n. Thus $i^* \mathscr{L}$ is ample.

- 2. (15 points) Hartshorne II Ex. 7.5: Establish the following properties of ample and very ample invertible sheaves on a noetherian scheme $X \,.\, \mathscr{L}$ and \mathscr{M} will denote invertible sheaves, and for (d) and (e) we assume furthermore that X is of finite type over a noetherian ring A.
 - (a). If \mathscr{L} is ample and \mathscr{M} is generated by global sections, then $\mathscr{L} \otimes \mathscr{M}$ is ample.
 - (b). If \mathscr{L} is ample and \mathscr{M} is arbitrary, then $\mathscr{M}\otimes \mathscr{L}^n$ is ample for sufficiently large n.
 - (c). If \mathscr{L} , \mathscr{M} are both ample, so is $\mathscr{L} \otimes \mathscr{M}$.
 - (d). If \mathscr{L} is very ample and \mathscr{M} is generated by global sections, then $\mathscr{L} \otimes \mathscr{M}$ is very ample.
 - (e). If \mathscr{L} is ample, then there is an $n_0 > 0$ such that \mathscr{L}^n is very ample for all $n \ge n_0$.

Do not use cohomology for this exercise.

In part (d), for partial credit you may assume that X is proper over Spec A, or for slightly more partial credit you may instead assume that X is reduced. For parts (d) and (e), "very ample" means very ample over Spec A.

(a). Let \mathscr{F} be a coherent sheaf on X. Since \mathscr{L} is ample, there is an integer n_0 such that $\mathscr{F} \otimes \mathscr{L}^n$ is gbgs for all $n \ge n_0$. We may assume that $n_0 \ge 0$. Then $\mathscr{F} \otimes (\mathscr{L} \otimes \mathscr{M})^n \cong (\mathscr{F} \otimes \mathscr{L}^n) \otimes \mathscr{M}^n$ is gbgs, because it is a tensor power of the gbgs sheaves $\mathscr{F} \otimes \mathscr{L}^n$ and \mathscr{M} (with \mathscr{M} being repeated $n \ge 0$ times).

(b). Pick n_0 such that $\mathscr{M} \otimes \mathscr{L}^{n_0}$ is generated by global sections. For all $r \in \mathbb{Z}_{>0}$, \mathscr{L}^r is ample, so $(\mathscr{M} \otimes \mathscr{L}^{n_0}) \otimes \mathscr{L}^r \cong \mathscr{M} \otimes \mathscr{L}^{n_0+r}$ is ample, by (a). Thus $\mathscr{M} \otimes \mathscr{L}^n$ is ample for all $n > n_0$.

(c). Since \mathscr{M} is ample, there is an integer n > 0 such that $\mathscr{O}_X \otimes \mathscr{M}^n \cong \mathscr{M}^n$ is generated by global sections. By II, Prop. 7.5, \mathscr{L}^n is ample; by part (a)

$$\mathscr{L}^n \otimes \mathscr{M}^n \cong (\mathscr{L} \otimes \mathscr{M})^n$$

is ample; and then by Prop. 7.5 again, $\mathscr{L}\otimes\mathscr{M}$ is ample.

(d). Recall that " \mathscr{L} is very ample" means that \mathscr{L} is very ample over A. Let s_0, \ldots, s_n be global sections of \mathscr{L} corresponding to an embedding $\phi: X \to \mathbb{P}_A^n$. Let U be an open subset of \mathbb{P}_A^n such that $\phi: X \to U$ is a closed embedding (this exists by the definitions of embedding, closed embedding, and relative topology). Let t_0, \ldots, t_m be global sections of \mathscr{M} generating it, and let $\psi: X \to \mathbb{P}_A^m$ be the corresponding morphism. We claim that $(\phi, \psi): X \to U \times_A \mathbb{P}_A^m$ is a closed embedding.

We first show that the graph $\Gamma_{\psi} \colon X \to X \times_A \mathbb{P}^m_A$ is a closed embedding. (This was noted in class on Friday, 15 March, but that was after this assignment was due.) Since \mathbb{P}^m_A is separated over Spec A, the diagonal map (Id, Id) is a closed embedding, and it will suffice to show that the square in the diagram

is cartesian (i.e., that $X = (X \times_A \mathbb{P}_A^m) \times_{\mathbb{P}_A^m \times_A \mathbb{P}_A^m} \mathbb{P}_A^m$). To see this, it is first of all easy to check that the square commutes. Also, commutativity of the perimeter implies that $(\psi \circ f, g) = (h, h)$, and therefore $\psi \circ f = g = h$. The commutativity conditions on θ are $(\theta, \psi \circ \theta) = (f, g)$ and $\psi \circ \theta = h$. The first condition implies $\theta = f$, so any θ is unique. This value of θ satisfies the commutativity conditions since $\psi \circ f = g = h$, so the square is indeed cartesion, as was to be shown.

By base change, the morphism $\phi \times \operatorname{Id}_{\mathbb{P}_A^m} : X \times_A \mathbb{P}_A^m \to U \times_A \mathbb{P}_A^m$ is a closed embedding. Composing this with the closed embedding Γ_{ψ} , we find that $(\phi, \psi) : X \to U \times_A \mathbb{P}_A^m$ is a closed embedding.

We now claim that $(\phi, \psi): X \to \mathbb{P}_A^n \times_A \mathbb{P}_A^m$ is an embedding. Indeed, if X is proper over Spec A, then we can take $U = \mathbb{P}_A^n$ above, and this is immediate. If X is reduced, then let \overline{X} be the closure of $\operatorname{im}(\phi, \psi)$ with reduced induced subscheme structure, and then X is isomorphic to an open subscheme of the closed subscheme \overline{X} of $\mathbb{P}_A^n \times_A \mathbb{P}_A^m$. In general, one uses II, Ex. 3.11d (see Görtz–Wedhorn (10.8)).

Composing this embedding with the Segre embedding $\sigma: \mathbb{P}^n_A \times_A \mathbb{P}^m_A \to \mathbb{P}^{nm+n+m}_A$ (which is a closed embedding), we find that

$$\sigma \circ (\phi, \psi) \colon X \to \mathbb{P}^{nm+n+m}_A$$

is an embedding. Since this map corresponds to the global sections $s_i t_j$, $0 \le i \le n$, $0 \le j \le m$ of $\mathscr{L} \otimes \mathscr{M}$, it follows that $\mathscr{L} \otimes \mathscr{M}$ is very ample.

(e). Pick n' such that $\mathscr{L}^{n'}$ is very ample, and pick n'' such that \mathscr{L}^n is generated by global sections for all $n \ge n''$. Then $\mathscr{L}^n \cong \mathscr{L}^{n'} \otimes \mathscr{L}^{n-n'}$ is very ample for all $n \ge n' + n''$, by part (d).

- 3. (15 points) Hartshorne III Ex. 5.7(a)–(c): Let X (respectively, Y) be proper schemes over a noetherian ring A. We denote by \mathscr{L} an invertible sheaf.
 - (a). If \mathscr{L} is ample on X, and Y is any closed subscheme of X, then $i^*\mathscr{L}$ is ample on Y, where $i: Y \to X$ is the inclusion. Added condition: Use cohomology for this part.
 - (b). \mathscr{L} is ample on X if and only if $\mathscr{L}_{red} = \mathscr{L} \otimes \mathscr{O}_{X_{red}}$ is ample on X_{red} .
 - (c). Suppose X is reduced. Then \mathscr{L} is ample on X if and only if $\mathscr{L} \otimes \mathscr{O}_{X_i}$ is ample on X_i , for each irreducible component X_i of X.

(a). Let \mathscr{L} be ample on X, and let \mathscr{F} be any coherent sheaf on Y. Then $i_*\mathscr{F}$ is coherent (II Ex. 5.5), and by Lemma 2.10, (II Ex. 6.8a), (II Ex. 5.1d), and III, Prop. 5.3, we have

$$H^{i}(Y,\mathscr{F}\otimes(i^{*}\mathscr{L})^{n})=H^{i}(X,i_{*}(\mathscr{F}\otimes(i^{*}\mathscr{L})^{n}))=H^{i}(X,i_{*}\mathscr{F}\otimes\mathscr{L}^{n})=0$$

for all $n \gg 0$. Thus $i^* \mathscr{L}$ is ample on Y, by Prop. 5.3 again.

(b). Since $i: X_{\text{red}} \to X$ is a closed embedding and $\mathscr{L}_{\text{red}} = i^* \mathscr{L}$ (II Prop. 5.2), one implication is immediate from part (a).

Conversely, suppose that \mathscr{L}_{red} is ample, and let \mathscr{F} be a coherent sheaf on X. Let \mathscr{N} be the sheaf of nilpotent elements on X, so that $\mathscr{O}_{X_{\text{red}}} \cong \mathscr{O}_X/\mathscr{N}$, and recall from the proof of III, Ex. 3.1 (on Homework 3) that $\mathscr{N}^r = 0$ for some $r \in \mathbb{N}$. Then, for $0 \leq j < r$, the sheaf $\mathscr{N}^j \mathscr{F}/\mathscr{N}^{j+1} \mathscr{F}$ is a coherent sheaf on X_{red} , so $H^i(X_{\text{red}}, (\mathscr{N}^j \mathscr{F}/\mathscr{N}^{j+1} \mathscr{F}) \otimes_{\mathscr{O}_{X_{\text{red}}}} \mathscr{L}^n_{\text{red}}) = 0$ for all i > 0 and all $n \geq n_0(j)$ for some $n_0(j) \in \mathbb{Z}$. By elementary properties of tensor, we have that

$$(\mathscr{N}^{j}\mathscr{F}/\mathscr{N}^{j+1}\mathscr{F})\otimes_{\mathscr{O}_{X_{\mathrm{red}}}}\mathscr{L}^{n}_{\mathrm{red}}\cong(\mathscr{N}^{j}\mathscr{F}/\mathscr{N}^{j+1}\mathscr{F})\otimes_{\mathscr{O}_{X}}\mathscr{L}^{n}$$

for all n, and the latter can be regarded as a sheaf on X. Thus, by III, Lemma 2.10,

$$H^{i}(X, (\mathcal{N}^{j}\mathcal{F}/\mathcal{N}^{j+1}\mathcal{F}) \otimes \mathcal{L}^{n}) = 0$$

for all i > 0, all $n \ge n_0(j)$, and all $0 \le j < r$. Let $n_0 = \max\{n_0(0), \ldots, n_0(r-1)\}$. From the short exact sequence

$$0 \to \mathcal{N}^{j+1}\mathscr{F} \otimes \mathscr{L}^n \to \mathcal{N}^j \mathscr{F} \otimes \mathscr{L}^n \to (\mathcal{N}^j \mathscr{F} / \mathcal{N}^{j+1} \mathscr{F}) \otimes \mathscr{L}^n \to 0$$

we get an exact sequence

$$H^{i}(X, \mathcal{N}^{j+1}\mathscr{F} \otimes \mathscr{L}^{n}) \to H^{i}(X, \mathcal{N}^{j}\mathscr{F} \otimes \mathscr{L}^{n}) \to H^{i}(X, (\mathcal{N}^{j}\mathscr{F}/\mathcal{N}^{j+1}\mathscr{F}) \otimes \mathscr{L}^{n}) .$$

By descending induction on j, and noting that $\mathscr{N}^r \mathscr{F} = 0$, so $H^i(X, \mathscr{N}^r \mathscr{F} \otimes \mathscr{L}^n) = 0$ for all i and all n, it follows from the above sequence that $H^i(X, \mathscr{F} \otimes \mathscr{L}^n) = 0$ for all i > 0 and all $n \ge n_0$, so \mathscr{L} is ample on X by III, Prop. 5.3.

(c). Again, since $j_i: X_i \to X$ is a closed embedding and $\mathscr{L} \otimes \mathscr{O}_{X_i} = j_i^* \mathscr{L}$ for all i, one implication is immediate from part (a) (and III, Lemma 2.10).

Conversely, suppose that $\mathscr{L} \otimes \mathscr{O}_{X_i}$ is ample on X_i for all i. It will suffice to prove the following lemma.

Lemma. Let X be a reduced scheme, proper over A, let Y and Z be reduced closed subschemes of X such that $X = Y \cup Z$, and let \mathscr{L} be a line sheaf on X such that $i^*\mathscr{L}$ and $j^*\mathscr{L}$ are ample on Y and Z, respectively, where $i: Y \hookrightarrow X$ and $j: Z \hookrightarrow X$ are the inclusion maps. Then \mathscr{L} is ample (on X).

Proof. Let \mathscr{I} and \mathscr{J} be the sheaves of ideals corresponding to Y and Z, respectively. Then $\mathscr{I} \mathscr{J} \subseteq \mathscr{I} \cap \mathscr{J} = 0$, since $\mathscr{I} \cap \mathscr{J}$ is associated to a closed subscheme of X whose underlying topological space is all of X, and since X is reduced.

Let \mathscr{F} be a coherent sheaf on X. Consider the filtration

$$\mathcal{F} \supseteq \mathscr{I} \mathcal{F} \supseteq \mathscr{I} \mathscr{J} \mathcal{F} = 0$$
.

The sheaf \mathscr{IF} is killed by \mathscr{J} , as is $\mathscr{IF} \otimes \mathscr{L}^n$ for all n. Therefore, by (II, 5.2), $\mathscr{IF} \otimes \mathscr{L}^n \cong j_* j^* (\mathscr{IF} \otimes \mathscr{L}^n)$ for all n; note that $j^* (\mathscr{IF})$ is a coherent sheaf on Z. Therefore, by III, Lemma. 2.10 and III, Prop. 5.3,

$$H^{p}(X, \mathscr{IF} \otimes \mathscr{L}^{n}) \cong H^{p}(X, j_{*}j^{*}(\mathscr{IF} \otimes \mathscr{L}^{n}))$$
$$\cong H^{p}(Z, j^{*}(\mathscr{IF} \otimes \mathscr{L}^{n})) \cong H^{p}(Z, j^{*}(\mathscr{IF}) \otimes (j^{*}\mathscr{L})^{n}) = 0$$

for all p > 0 and all $n \gg 0$ (depending only on \mathscr{F} and \mathscr{I}). Next consider the quotient sheaf $\mathscr{G} := \mathscr{F}/\mathscr{IF}$. It is killed by \mathscr{I} , so by a similar argument $H^p(X, \mathscr{G} \otimes \mathscr{L}^n) = 0$ for all p > 0 and all $n \gg 0$ depending only on \mathscr{G} (and Y).

Now twist the short exact sequence

$$0 \to \mathscr{IF} \to \mathscr{F} \to \mathscr{G} \to 0$$

by \mathscr{L}^n and take the long exact sequence in cohomology. This gives (in part)

$$H^p(X,\mathscr{IF}\otimes\mathscr{L}^n)\to H^p(X,\mathscr{F}\otimes\mathscr{L}^n)\to H^p(X,\mathscr{G}\otimes\mathscr{L}^n)$$

for all p > 0. For all $n \gg 0$ the two end terms are zero, so the middle term must also be zero. By III, Prop. 5.3 it then follows that \mathscr{L} is ample.