Math 256B. Spectral Sequences

For concreteness, we work over the category 2(b of abelian groups; however, ev-
erything will still work over an arbitrary abelian category.

Mostly this follows Lang’s Algebra, and also Vakil’'s FOAG. (Note that Vakil in-
terchanges the roles of p and ¢.)

First, we give the definition of spectral sequence that is likely the most familiar to
mathematicians in algebraic geometry.

Definition. A spectral sequence is a sequence {E,,d,},>o of bigraded objects

E, = P BP9,

p,qeN
together with homomorphisms (called differentials) d, = d?9: EP9 — EPTma-r+1
(hence of bidegree (r,1—r)) for all r,p,q, such that
(i). d>=0, and
(ii). H(E,) = E,11 (ie.,

EPY = ker(dP?: EPY — EPYTaTHL) fim(qpratr ol prona—ril _y pra)

for all r,p,q).
In the above, we also let Eﬁp’q) =0 forall » €N and all (p,q) € Z%\ N2,

Remark. Let p,g € N and n =p+ ¢q. Then, for all r >n+1, we have g—r+1<0
and p—r <0 (since p,q < n); hence dP*? = d?="97"=1 = (, and consequently

P9 — P9 _ P4 __
EPY =P8 = EPf, = ... .

We let E%:? denote this limiting value.
Definition. Let (K°,D) be a (co)complex of abelian groups. Then a filtration of
(K", D) is an N-graded filtration K™ = FOK™ D FIK" D ... of K" forall n € N

such that D(FPK™) C FPK™*! for all n,p. We also assume that FPK"™ =0 for
all sufficiently large p, depending on n.

Definition. A filtered complex is a complex (K, D) with a filtration.

Definition. Let (K°,D) be a filtered complex. Then, for all n € N, we define a
filtration {FPH"(K")}pen of H"(K") as follows. By definition of filtration, the
inclusions FPK™ — K™ for all n induce a map of FPK' — K  of complexes,
hence a map H"(FPK') — H"(K") for all n. We define FPH"(K") to be the
image of this map. Since FPT'K' — FPK' is a map of complexes, and since
F°K' = K", we have

H"(K)=F'H"(K')D F'H"(K')D ...

for all n. Moreover, for all n there is a p such that FPK™ = 0, which gives
FPH™(K") =0 (for the same p).

The main theorem of this handout is the following.
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Theorem. Let (K',D) be a filtered complex. Assume that FPK™ = 0 for all n € N
and all p > n. For all r,n,p € N, define:

X"P = FPK™
XPP = FPK" N D™ (FPTT K™
Y = D(Xrn:llmf(rfl)) +X;Lip1+1 ’ and

wp _— n;p n;p
ErP = XP Y

Then:

(a). Y,»P C XP (and therefore E"P is well defined) for all r,n,p;
(b). D induces well-defined maps

— Jip. pip n+1;p+r
d, =d"’: B’ — B

for all r,n,p;
(c). with the above differentials, and letting EP9 = E"P and dP9 = d*P for all
r,n,p,q with p+q=n, {E,,d,},>0 Is a spectral sequence; and
(d). we have F""1H"(K") =0 for all n, and
FPH"(K')/FPT H™(K') = EWP
forall ne€ N and all p=0,...,n.
Proof. (a). When r =0,

Xy? =FPK"N D (FPK™) = FPK"  and

. 1
Y(’)’I’Lyp — D(Fp—i-lKn—l) 4 Fp+lKn — Fp+lKn 7 ( )

so clearly Y,"? C X 7.

Now assume 7 > 0. Since X"~ ?~"+1 = pp=r+1gn=1n D=1(FPK")  we have

D(XI=1#77+) € D(D Y (FPE™)) € FPE™
combining this with D(X"~"?~"1) C D=1(FP+"K"1) (since Do D =0) gives
DX € PP DT (P R = X @

Also,

Xt = PR KT A DY FPTTR™T) C FPRT A DTN EPTTRM ) = XL (3)
Combining (2) and (3) then gives

Y = D(X::ll;p—(T—l)) —i—X;Lile C X
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(b). This amounts to checking that D(X™P) C XPTEP+r and D(Y,»P) C y,rtlvtr,
For the first of these,

D(X™P) C D(D_l(Fp”K”H)) C Frtrgntl
because X™P C D~—1(FP+mKnt1) by definition, and
D(X™P) C D~ (FPF2r gn+2)
because Do D =0, so
D(X1P) C FPH7gntl o D=L(Fpe2r fgnt2) = xntlivtr

As for D(Y,"P),

D(D(X[ 5Py 4 x i
(xXmn

r—

D(Y;™")

D
D

N

(Xn;p—i-l) +Xn+1;p+r+1

r—1 r—1

_ yn+lip+r
=Y .

Note that this holds also for r = 0, because the value of X"*"**"*! did not play a
role here.

(c). This is a matter of checking that d? = 0 and that H(E,) = E,;1 .
The fact that d? = 0 is immediate from the fact that D? = 0.
To check that H(E,) = E,;, we follow Vakil 1.7.13.
ip+1 ;
X+ X
Y,p :
Proof. Tt is easy to check that ker d?? = (X™P N D=L(Y,»TLP+m)) /Y%P | so it suffices
to show that

Claim. ker dP =

X;l;p N0 D—l(yrn%-l;p%—r) — X:}‘;p;rl + X’I’?‘l-;f—pl ) (4)
Indeed, we have
XL = prrlgn o pTY(FPET R C PR A DTHFPTTR Y = XPP o (5)
and
X WP A D—I(anll;p+r+1)
— FpKn N Dfl(Fp+7“Kn+1) N D*l(FerrJrlKn«H ) Dfl(Fp+2rKn+2))
= FPK" N D YFPT K"ty n D~ (FrrrHl gt
— FpKn N D—l(Fp+T+1Kn+l)

= X:Ljrpl : (6)
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Therefore, by definition of Y,**1iP*" general properties of homomorphisms, (5), and
(6), we have
Xp 0 D7 (Y = X 0 D (DX + X
= XA (X4 D ()
= X[ (X0 0 D (X T)

_ ynp+l n;p
- Xr—l + X’I’-‘rl .

This is (4), so the claim is proved. O

: : e e — —lip—r+1 e
Now consider the image of dP~": E™P~" — E™P_ Since X~ /P~"H C Xn-tir—r

DX 4 vy
an;p
D(X=b077) + DX 4 Xy
YTTHP
D) 4 X
Y'Tn;p :

: n;p—r __
imdyP™" =

It will suffice to show that there is a well-defined isomorphism

n;p n;p n;p n;p+1 :
EvP Xo _ X5 ¢ X+ X0 ~ ker dP

f— - f .) .
1 ; N . B X = D
r4+ ]rTn 1; D( )777} 1;p T') ):Zl,p+1 D( )r:L 1;p 7") ):;L,I)lJrl i l?,p T

We first claim that
X0 0 (D(XRPT) 4 X = D) 4 Xt (7)
Since D(XP~1P=) C D(D~Y(FPK™)) and Do D =0, we have
D(X]~ 1P~y C FPK* N D™'(0) C FPK" N D~ (FPH Ky = X
Also
X:ipl ) X:ipfrl = FPK"™ N D—l(Fp—i-r—l-lKn—i-l) N FPHLK™ N D—l(Fp+rKn+1)
— Fp+1Kn N D*l(Fp+T+1Kn+l)
— X;L;p—kl '

Combining these two facts gives (7), because

Xﬁ-pl N (D(X;L—l;p—r) + X:Lipl—’—l) — D(X;z—l;p—r) + (X:j-;-l N X;Lip1+1)
— D()(;t*l;pfr) _,_X;t;pﬂ )
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Therefore ¢ is well-defined and injective. Surjectivity of ¢ is clear, so ¢ is an isomor-
phism and (c) is proved.
(d). First of all, the fact that F*"T'H"(K") =0 follows immediately from the assump-
tion that F"H K™ =0.

By definition of FPH™(K"),

.\ kerD" FPK™ N ker D) +im D
FpH”(K'):im<H”(FpK)—+ - ):( D) timD

im Dn—1 im D

First consider E™P . Since d™? =0 for all r > n+1 (since E"PT" = (), we have

XP = X" and YP =Y} for all 7 > n+1; call these groups X237 and Y2,

respectively. We have
XZP =FPK" Nker D
and

Y = D(FP~" T K" A DTHEFPK™)) 4+ X

for all n, r, and p, so

Y2 = D(K™ ' N DY (FPK™)) + Xptt
= D(D ' (FPK™)) + X2PH!
= (FPK™Nim D) + (FPT K" Nker D) .

And, naturally, EP = X5P/YVP
We then claim that there is a well-defined isomorphism

FPK™ Nker D
(FPK™Nim D) + (FPt1K™ Nker D)
o, (FPE"NkerD) +imD _ FPH'(K)
(FrHiKn Oker D) +im D FrolHn(K) -

nip
EDP =

To see this, we first note that

FPK™Nker DN ((FP™' K™ Nker D) +im D) = FPK" N ((FPT K™ Nker D) + im D)
= (FPH K™ Nker D) + (FPK" Nim D) .

Indeed, the first step holds because im D C ker D, and so ker D contains the quantity
in parentheses. The second step is true because FPT!K"Nker D is contained in FPK™ .

Therefore ¢ is well-defined and injective. It is clearly surjective, so it is the desired
isomorphism. ]



