Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

本文为2024年暑假我于HKUST作的summer research program报告chaoshubiji. 在此我希望对港科的Li Weiping老师表示由衷的感谢. Li教授在代数几何方面学问广博, 平易近人, 他的教学深明大义, 向我揭示了模空间这一宏伟理论的一隅. 我因为水平有限, 难以形成自己的成果, 只能抄书作为报告, 实在惭愧.

以下是introduction 的部分简译:

模空间的存在性长期以来都作为代数几何的研究热点. 我们对是否存在一类能够"参数化"几何对象的空间感兴趣, 更进一步的, 如果这类空间存在, 它是否能够作为scheme? 它是否proper? coherent sheaf over XX 的模空间 M\mathfrak{M} 蕴含了许多XX 本身的几何信息. 然而, M\mathfrak{M} 并不总是存在. 许多情况下, 我们想要参数化的一族对象过"大", 导致 M\mathfrak{M} 无法成为scheme, 因此我们希望研究有某些特殊性质的coherent sheaf 构成的模空间. 本文讨论的主要为具有固定的Hilbert polynomial 的一族torsion-free sheaf 形成的模空间. 而想要研究这一类模空间, 首先要解决的问题是F\mathfrak{F} 这一族coherent sheaf是否有界, 也就是当模空间M\mathfrak{M}存在时, 它是否是finite type over base field的.

Introduction

The existence of moduli space is one of the oldest and hottest topic in algebraic geometry. We are interested in if there exist a space that “parametrize” desired geometric objects, and if it exists, whether it’s proper or not. The moduli space M\mathfrak{M} that parametrize coherent sheaves over algebraic varieties XX encodes a lot of geometric information about XX. However, such M\mathfrak{M} does not always exist. Sometimes the family we want to parametrize is too “big” to make M\mathfrak{M} into a scheme, so we may focus on a family F\mathfrak{F} with specific property. In our case, we want to know some information about moduli space of torsion-free semistable sheaves with fixed Hilbert polynomial. To construct such a moduli space, the first and the most fundamental problem is the boundedness of the family F\mathfrak{F}, i.e. the moduli space, if it exists, whether it is of finite type over the base field.

We will establish the bounded of torsion-free semistable sheaves with algebraically closed base field with characteristic zero following steps in Hu&Lehn7. We will begin with an introduction of μ\mu-semistable sheaves and a complete proof of Kleiman’s criterion, which is an important criterion for boundedness. The second result is Grauert-Mülich Theorem. It describes the behaviour of semistable sheaf F\mathcal{F} under restriction on general F\mathcal{F}-regular sequences. Then we will discuss semistability of tensor product of sheaves and use it to prove the Le Potier-Simpson Theorem. We will also mention some approaches to the same problem in positive characteristic case in the last section.

Preliminaries

In this section, we set up the preliminaries for the semistable sheaves and boundedness of sheaves. For the part of of semistabilities, we refer Hu&Lehn7 for details and proofs. We will provide a useful criterion Theorem 17.

Let XX be a projective variety over some algebraically closed field kk. Fix an ample line sheaf OX(1)\mathcal{O}_{X}(1) and the corresponding ample divisor class HH. For any coherent sheaf F\mathcal{F}, the dimension of F\mathcal{F} is the dimension of SuppF\mathop{\mathrm{Supp}}\mathcal{F}, which is exactly the degree of Hilbert polynomial P(F)(m)P(\mathcal{F})(m) with the respect to HH. P(F)(m)P(\mathcal{F})(m) can be expressed into the form i=0dimFαi(F)mii!\sum\limits_{i=0}^{\dim\mathcal{F}}\alpha_{i}(\mathcal{F})\frac{m^{i}}{i!} with rational coefficients.

Definition 1. Let F\mathcal{F} be a coherent sheaf of dimension d=dim(X)d=\dim(X), the degree of F\mathcal{F} is defined by

deg(F):=αd1(F)rk(F)αd1(OX)\deg(\mathcal{F}):= \alpha_{d-1}(\mathcal{F})-\mathop{\mathrm{rk}}(\mathcal{F})\cdot \alpha_{d-1}(\mathcal{O}_{X})

and its slope by

μ(F):=deg(F)rk(F),\mu(\mathcal{F}):=\frac{\deg(\mathcal{F})}{\mathop{\mathrm{rk}}(\mathcal{F})},

and the slope of Hilbert polynomial by

μ^(F):=αd1(F)αd(F).\hat{\mu}(\mathcal{F}):=\frac{\alpha_{d-1}(\mathcal{F})}{\alpha_{d}(\mathcal{F})}.

Clearly, the relation of μ(F)\mu(\mathcal{F}) and μ(F)^\hat{\mu(\mathcal{F})} can be given by μ(F)=αd(OX)μ(F)^αd1(OX)\mu(\mathcal{F})=\alpha_{d}(\mathcal{O}_{X})\hat{\mu(\mathcal{F})}-\alpha_{d-1}(\mathcal{O}_{X}). For smooth XX, Hirzebruch-Riemann-Roch Theorem shows that degF=c1(F)Hd1\deg \mathcal{F}=c_{1}(\mathcal{F})\cdot H^{d-1}, which is an integer.

Definition 2. Let F\mathcal{F} be a coherent sheaf of dimension d=dim(X)d=\dim(X). F\mathcal{F} is called μ\mu-semistable (or just semistable) if any subsheaf E\mathcal{E} has dimension less than dd, then E\mathcal{E} has dimension less than d1d-1, and for all subsheaf GF\mathcal{G}\subset \mathcal{F} with 0<rkG<rkF0<\mathop{\mathrm{rk}}\mathcal{G}<\mathop{\mathrm{rk}}\mathcal{F}, we have μ(G)μ(F)\mu(\mathcal{G})\leq \mu(\mathcal{F}). F\mathcal{F} is called μ\mu-stable if the above inequality is strict.

For torsion-free sheaf F\mathcal{F}, the definition is equivalent to say: F\mathcal{F} is (semi)stable if for all subsheaf G\mathcal{G} of F\mathcal{F} with 0<rk(G)<rk(F)0<\mathop{\mathrm{rk}}(\mathcal{G})<\mathop{\mathrm{rk}}(\mathcal{F}), μ(G)<μ(F)\mu(\mathcal{G})< \mu(\mathcal{F}) (resp. μ(G)μ(F)\mu(\mathcal{G})\leq \mu(\mathcal{F})). We will mainly focus on torsion-free semistable sheaves. An equivalent definition can be state in terms of quotient sheaves:

There’s another stablity called “Gieseker stablity”. The stablity involves pure sheaf:

Definition 3. A coherent sheaf F\mathcal{F} is pure of dimension dd if dimF=d\dim \mathcal{F}=d and all nontrivial coherent subsheaf E\mathcal{E} of F\mathcal{F} has dimension dd.

Clearly, a sheaf F\mathcal{F} is pure of dimension dimX\dim X is equivalent to F\mathcal{F} is torsion free. Gieseker stablity encodes more information than μ\mu-stablity. The coherent sheaf F\mathcal{F} is (semi)stable if F\mathcal{F} is pure and for all proper subsheaf E\mathcal{E}, on has P(E)(m)αdimE(E)()P(F)(m)αdimF(F)\frac{P(\mathcal{E})(m)}{\alpha_{\dim \mathcal{E}}(\mathcal{E})} (\leq )\frac{P(\mathcal{F})(m)}{\alpha_{\dim \mathcal{F}}(\mathcal{F})}.

Lemma 4. Let F\mathcal{F} be a coherent sheaf. Then F\mathcal{F} is semistable if and only if for all quotient sheaves E\mathcal{E} of F\mathcal{F}, μ(E)μ(F)\mu(\mathcal{E})\geq \mu(\mathcal{F}).

Proof

Proof. See Hu&Lehn7 section 1.2. ◻

The following lemma is useful in constructing Harder-Narasimhan filtration:

Lemma 5. Let F1\mathcal{F}_{1} and F2\mathcal{F}_{2} be semistable sheaves with μ(F1)>μ(F2)\mu(\mathcal{F}_{1})>\mu(\mathcal{F}_{2}), then Hom(F1,F2)=0\mathop{\mathrm{Hom}}(\mathcal{F}_{1},\mathcal{F}_{2})=0.

Proof

Proof. Loc.cit. ◻

The followings are some basic facts about semistability

Remark 6.

  1. A line sheaf L\mathcal{L} is stable.

  2. Let F\mathcal{F} be a semistable sheaf and L\mathcal{L} a line sheaf, then FL\mathcal{F}\otimes \mathcal{L} is semistable.

  3. Let 0FFF00\to \mathcal{F}'\to \mathcal{F}\to \mathcal{F}''\to 0 be a short exact sequence of sheaves. Then

  4. If F\mathcal{F} is semistable and either μ(F)=μ(F)\mu(\mathcal{F})=\mu(\mathcal{F}') or μ(F)=μ(F)\mu(\mathcal{F})=\mu(\mathcal{F}''), then F\mathcal{F}' and F\mathcal{F}'' are semistable.

  5. If F\mathcal{F}' and F\mathcal{F}'' are semistable and μ(F)=μ(F)\mu(\mathcal{F}')=\mu(\mathcal{F}''), then F\mathcal{F} is
    semistable.

A torsion-free sheaf F\mathcal{F} may not be semistable, but F\mathcal{F} always admits a Harder-Narasimhan filtration whose factors are semistable. Harder-Narasimhan filtration is a very important tool in study of semistable sheaves.

Definition 7. Let F\mathcal{F} be a coherent sheaf on XX. A Harder-Narasimhan filtration is an increasing filtration

0=HN0(F)HN1(F)HNl(F)=F,0=HN_{0}(\mathcal{F})\subset HN_{1}(\mathcal{F})\subset\cdots\subset HN_{l}(\mathcal{F})=\mathcal{F},

such that the factors griHN=HNi(F)/HNi1(F)gr_{i}^{HN}=HN_{i}(\mathcal{F}) /HN_{i-1}(\mathcal{F}) for i=1,,li=1,\dots, l, are semistable sheaves with slope μi\mu_{i}, satisfying

μmax:=μ1>μ2>>μl=:μmin.\mu_{max}:=\mu_{1}>\mu_{2}>\cdots>\mu_{l}=:\mu_{min}.

We call gr1HNgr_{1}^{HN} the maximal destablizing sheaf and grlHNgr_{l}^{HN} the minimal destablizing quotient. One can generalize Lemma 5 to torsion-free sheaves using notation above:

Lemma 8. Let F\mathcal{F} and G\mathcal{G} be torsion-free sheaves and μmin(F)>μmax(G)\mu_{min}(\mathcal{F})>\mu_{max}(\mathcal{G}), then Hom(F,G)=0\mathop{\mathrm{Hom}}(\mathcal{F},\mathcal{G})=0.

Theorem 9. Every torsion-free sheaf F\mathcal{F} has a unique Harder-Narasimhan filtration. Moreover, all factors of the Harder-Narasimhan filtration is torsion-free.

Proof

Proof. The idea is to find a subsheaf E\mathcal{E} of F\mathcal{F} such that for all subsheaf GF\mathcal{G}\subset \mathcal{F}, one has μ(E)μ(G)\mu(\mathcal{E})\geq \mu(\mathcal{G}), and moreover, μ(E)=μ(G)\mu(\mathcal{E})=\mu(\mathcal{G}) only if GE\mathcal{G}\subset\mathcal{E}. Then we have E\mathcal{E} unique and semistable. For more details, see Hu&Lehn7 section 1.3. ◻

Harder-Narasimhan filtration can be done on a family of sheaves parametrized on some integral scheme. For the proof we again refer to Hu&Lehn7 section 2.3. We explain some notation that will be used in the articles here:

For f:XSf:X\to S a morphism of finite type noetherian schemes an g:TSg:T\to S, the notation XTX_{T} will be used for the fibre product T×SXT\times_{S} X, and gX:XTXg_{X}:X_{T}\to X, fT:XTTf_{T}:X_{T}\to T are the natural projections. For sSs\in S and coherent sheaf F\mathcal{F} on XX, XsX_{s} denotes the fibre f1(s)=Speck(s)×SXf^{-1}(s)=\mathop{\mathrm{Spec}}k(s)\times_{S}X and Fs=FXs\mathcal{F}_{s}=\mathcal{F}|_{X_{s}}.

Theorem 10. *Let SS be a finite type integral scheme over kk. Let f:XSf:X\to S bea projective morphism and OX(1)\mathcal{O}_{X}(1) be an ff-ample line sheaf on XX. Let F\mathcal{F} be a flat family of coherent sheaves on the fibre of closed point on SS. There is a projective birational morphism g:TSg:T\to S of integral kk-scheme and a filtration

0=HN0(F)HN1(F)HNl(F)=gXF0=HN_{0}(\mathcal{F})\subset HN_{1}(\mathcal{F})\subset\cdots\subset HN_{l}(\mathcal{F})=g_{X}^{*}\mathcal{F}

such that the following holds:*

  1. The factors HNi(F)/HNi1(F)HN_{i}(\mathcal{F}) /HN_{i-1}(\mathcal{F}) are TT-flat
    for all i=1,,li=1,\dots, l;

  2. There is a dense open subscheme UTU\subset T such that
    HNi(F)t=gXHNi(Fg(t))HN_{i}(\mathcal{F})_{t}=g_{X}^{*}HN_{i}(\mathcal{F}_{g(t)}) for all tUt\in U. Here HNi(F(g(t)))HN_{i}(\mathcal{F}_{(g(t))}) is the Harder-Narasimhan filtration of Fg(t)\mathcal{F}_{g(t)}.

Remark 11.

  1. μmin(FE)=min{μmin(F),μmin(E)}\mu_{min}(\mathcal{F}\oplus \mathcal{E})=\min\{\mu_{min}(\mathcal{F}),\mu_{min}(\mathcal{E})\};

  2. μmax(FE)=max{μmax(F),μmax(E)}\mu_{max}(\mathcal{F}\oplus \mathcal{E})=\max\{\mu_{max}(\mathcal{F}),\mu_{max}(\mathcal{E})\}.

  3. μ(FE)=μ(F)+μ(E)\mu(\mathcal{F}\otimes \mathcal{E})=\mu(\mathcal{F})+\mu(\mathcal{E}).

  4. μmin(FE)μmin(F)+μmin(E)\mu_{min}(\mathcal{F}\otimes \mathcal{E})\leq \mu_{min}(\mathcal{F})+\mu_{min}(\mathcal{E}), μmax(FE)μmax(F)+μmax(E)\mu_{max}(\mathcal{F}\otimes \mathcal{E})\geq \mu_{max}(\mathcal{F})+\mu_{max}(\mathcal{E}).

  5. For exact sequence 0FFF0\to \mathcal{F}'\to \mathcal{F}\to \mathcal{F}'', μmin(F)μmin(F)\mu_{min}(F)\geq \mu_{min}(\mathcal{F}'') and μmax(F)μmax(F)\mu_{max}(\mathcal{F})\geq \mu_{max}(\mathcal{F}').

To construct a moduli space of sheaves, we need to make sure that our family of sheaves is not too big to parametrize. We will prove this is true for semistable sheaves on kk variety with chark=0\mathop{\mathrm{char}}k=0 in this report. We introduce the idea of boundedness and several criterion of boundedness next. The notation of Castelnuovo-Mumford regularity is needed.

Definition 12. Let mZm\in \mathbb{Z} and F\mathcal{F} coherent sheaf on XX. F\mathcal{F} is mm-regular if Hi(X,F(mi))=0H^{i}(X,\mathcal{F}(m-i))=0 for all i>0i>0.

Lemma 13. If F\mathcal{F} is mm-regular, then the following facts holds:

  1. F\mathcal{F} is mm'-regular for all mmm'\geq m.

  2. F(m)\mathcal{F}(m) is generated by global sections.

  3. The natural evaluation homomorphism H0(X,F(m))H0(X,O(n))H0(X,F(m+n))H^{0}(X,\mathcal{F}(m))\otimes H^{0}(X,\mathcal{O}(n))\to H^{0}(X,\mathcal{F}(m+n)) are surjective for all n0n\geq 0.

Proof

Proof. Follow the idea in Mum12. Without losing of generality we can assume X=PdX=\mathbb{P}^{d}. kk is algebraically closed so we can find a hyperplane section HH which does not contain any of the associated points of F\mathcal{F}. Then the sequence $$0\to \mathcal{F}(n-1)\to\mathcal{F}(n)\to \mathcal{F}_{H}(n)\to 0$$ is exact.

For 1, the long exact sequence gives Hi(X,F(ni1))Hi(X,F(ni))Hi(H,FH(ni))H^{i}(X,\mathcal{F}(n-i-1))\to H^{i}(X,\mathcal{F}(n-i))\to H^{i}(H,\mathcal{F}_{H}(n-i)). Proceeding a induction on nn, we may assume Hi(X,F(ni1))=0H^{i}(X,\mathcal{F}(n-i-1))=0. Similarly, by induction on the dimension dd, we may assume Hi(H,FH(n))=0H^{i}(H,\mathcal{F}_{H}(n))=0. So Hi(X,F(ni))=0H^{i}(X,\mathcal{F}(n-i))=0. This shows F\mathcal{F} is mm'-regular for mmm'\geq m.

For 3, we only prove the case n=1n=1, the general cases are similar. We use induction on dd. Consider the commutative diagram

H0(X;F(m))¬H0(X;OX(1))H0(H;FH(m))H0(X;F(m))H0(X;F(m+1))H0(H;FH(n+1))¾¹¿®º

The top morphism is the tensor product of two surjective morphism so it’s surjective. By inductive hypothesis, τ\tau is also surjective, so νμ\nu\circ \mu is surjective and H0(X,F(m+1))=imμ+kerνH^{0}(X,\mathcal{F}(m+1))=\mathop{\mathrm{im}}\mu+\mathop{\mathrm{ker}}\nu. The bottom row is exact, we also have H0(X,F(m+1))=imμ+imαH^{0}(X,\mathcal{F}(m+1))=\mathop{\mathrm{im}}\mu+\mathop{\mathrm{im}}\alpha. Note that α\alpha is given by tensoring the local section defining HH, so imαimμ\mathop{\mathrm{im}}\alpha\subset \mathop{\mathrm{im}}\mu. So H0(X,F(m+1))=imμH^{0}(X,\mathcal{F}(m+1))=\mathop{\mathrm{im}}\mu.

For 2, take sufficiently large nn, F(n)\mathcal{F}(n) is generated by global sections. Note H0(X,F(m))H0(X,O(nm))H0(X,F(n))H^{0}(X,\mathcal{F}(m))\otimes H^{0}(X,\mathcal{O}(n-m))\to H^{0}(X,\mathcal{F}(n)) is surjective, F(n)\mathcal{F}(n) is generated by H0(X,F(m))H0(X,O(nm))H^{0}(X,\mathcal{F}(m))\otimes H^{0}(X,\mathcal{O}(n-m)). At any point pXp\in X, the local case of above surjection shows that F(m)p=F(n)p\mathcal{F}(m)_{p}=\mathcal{F}(n)_{p} is generated by H0(X,F(m))H^{0}(X,\mathcal{F}(m)). So F(m)\mathcal{F}(m) is generated by H0(X,F(m))H^{0}(X,\mathcal{F}(m)). ◻

Thanks to 1 in Lemma 13, we can define the regularity of a coherent sheaf F\mathcal{F} to be reg(F):=inf{mZF is m-regular}\mathop{\mathrm{reg}}(\mathcal{F}):=\inf\{m\in \mathbb{Z}|\mathcal{F}\text{ is } m\text{-regular}\}. Now we give the definition for boundedness of a family of sheaves.

Definition 14. A family F\mathfrak{F} of isomorphism class of coherent sheaves on XX is bounded if there is a kk-scheme SS of finite type and a coherent sheaf F\mathcal{F} on X×SX\times S, such that F\mathfrak{F} is the subset of {Fss is closed point in S}\{\mathcal{F}_{s} | s\text{ is closed point in }S\}.

Lemma 15. The following property of a family of sheaves {Fi}iI\{\mathcal{F}_{i}\}_{i\in I} are equivalent:

  1. The family is bounded.

  2. The set of Hilbert polynomial {P(Fi)(m)}iI\{P(\mathcal{F}_{i})(m)\}_{i\in I} is finite and there is a uniform bound reg(Fi)ρ\mathop{\mathrm{reg}}(\mathcal{F}_{i})\leq \rho for all iIi\in I.

  3. The set of Hilbert polynomial {P(Fi)(m)}iI\{P(\mathcal{F}_{i})(m)\}_{i\in I} is finite and there is a coherent sheaf F\mathcal{F} such that all Fi\mathcal{F}_{i} admit a surjection FFi\mathcal{F}\to \mathcal{F}_{i} for all iIi\in I.

Proof

Proof. 1 \Rightarrow 2: The finiteness of Hilbert polynomial is from the flatten stratification lemma (c.f. Hu&Lehn7 section 2.1). For the regularity part, note SS is quasicompact and we may reduce to the case SS is affine. There is a m>0m>0 such that Hi(X×S,F(n))=0H^{i}(X\times S,\mathcal{F}(n))=0 for all i>0i>0 and n>mn>m. On the fibre Hi(X,FSpeck(s)×X(m+di))=Hi(X×S,F)×k(s)=0H^{i}(X,\mathcal{F}|_{\mathop{\mathrm{Spec}}k(s)\times X}(m+d-i))=H^{i}(X\times S,\mathcal{F})\times k(s)=0, here d=dimXd=\dim X. Thus reg(Fi)m+d\mathop{\mathrm{reg}}(\mathcal{F}_{i})\leq m+d.

2 \Rightarrow 3: Lemma 13 shows Fi(ρ)\mathcal{F}_{i}(\rho) are generated by global sections, so there’s surjections O(ρ)mFi\mathcal{O}(-\rho)^{m}\to \mathcal{F}_{i} with mmax{P(Fi)(ρ)}m\geq \max\{P(\mathcal{F}_{i})(\rho)\}. We will need the finiteness of the set {P(Fi)(m)}\{P(\mathcal{F}_{i})(m)\} here.

3 \Rightarrow 1: There’re only finitely many Hilbert polynomials. Let S=QuotP(Fi)S=\coprod\mathrm{Quot}_{P(\mathcal{F}_{i})} be the disjoint union of the Quot scheme corresponding to those finitely many Hilbert polynomials. Then 1 is immediate from the definition of Quot scheme. ◻

The following proposition allows us to estimate the regularity of a coherent sheaf F\mathcal{F} in terms of Hilbert polynomial and the number of global sections of the restriction of F\mathcal{F} to regular sequence of hyperplane sections.

Proposition 16. There’re universal polynomials PiQ[T0,,Ti]P_{i}\in \mathbb{Q}[T_{0},\dots, T_{i}] such that the following holds: Let F\mathcal{F} be a coherent sheaf of dimension dim(F)d\dim(\mathcal{F})\leq d and let H1,,HdH_{1},\dots, H_{d} be an regular sequence of hyperplane sections. If χ(FjiHj)=ai\chi(\mathcal{F}|_{\cap_{j\leq i}H_{j}})=a_{i} and h0(FjiHj)bih^{0}(\mathcal{F}|_{\cap_{j\leq i}}H_{j})\leq b_{i}, then $$\mathop{\mathrm{reg}}(\mathcal{F})\leq P_{d}(a_{0}-b_{0},\dots, a_{d}-b_{d}).$$

Proof

Proof. It suffices to show for the case X=PdX=\mathbb{P}^{d} and dimF=d\dim\mathcal{F}=d. By the argument of Lemma 1.2.1 in Hu&Lehn7, the Hilbert polynomial P(F)(m)P(\mathcal{F})(m) can be written into i=0dai(m+i1i)\sum\limits_{i=0}^{d}a_{i}\binom{m+i-1}{i}. The proof proceed by induction on the dimension of the sheaf.

The base case is clear: for zero dimension sheaf, P0P_{0} can be taken as any polynomial.

Let d1d\geq 1, take any hyperplane scetion HH which does not meet any associated points of F\mathcal{F}, we have the exact sequence

0F(m1)F(m)FH(m)00\to \mathcal{F}(m-1)\to \mathcal{F}(m)\to \mathcal{F}_{H}(m)\to 0

and the long exact sequence

Hi(X,F(m1))Hi(X,F(m))Hi(H,FH(m))Hi+1(X,F(m1))\cdots\to H^{i}(X,\mathcal{F}(m-1))\to H^{i}(X,\mathcal{F}(m))\to H^{i}(H, \mathcal{F}_{H}(m))\to H^{i+1}(X,\mathcal{F}(m-1))\to \cdots

By induction hypothesis, FH\mathcal{F}|_{H} is n=Pd1(a1b1,,adbd)n=P_{d-1}(a_{1}-b_{1},\dots, a_{d}-b_{d})-regular. For mn1m\geq n-1, the long exact sequence and Lemma 13 shows that Hi(X,F(m))Hi(X,F(m1))H^{i}(X,\mathcal{F}(m))\cong H^{i}(X,\mathcal{F}(m-1)) for all i2i\geq 2, mn2m\geq n-2. For sufficiently large mm, the cohomologies vanishes so all Hi(X,F(m))=0H^{i}(X,\mathcal{F}(m))=0 for i2i\geq 2, mn2m\geq n-2. We also get a surjection

ν:H1(X,F(m1))H1(X,F(m)),\nu: H^{1}(X,\mathcal{F}(m-1))\to H^{1}(X,\mathcal{F}(m)),

the function h1(F(m))h^{1}(\mathcal{F}(m)) is decreasing in mm. ν\nu becomes an isomorphism if and only if the homomorphism H0(X,F(m))H0(H,FH(m))H^{0}(X,\mathcal{F}(m))\to H^{0}(H,\mathcal{F}_{H}(m)) is surjective. Use the same diagram as in the proof of Lemma 13, we can conclude that if H0(X,F(m))H0(H,FH(m))H^{0}(X,\mathcal{F}(m))\to H^{0}(H,\mathcal{F}_{H}(m)) is surjective, then H0(X,F(m+1))H0(H,FH(m+1))H^{0}(X,\mathcal{F}(m+1))\to H^{0}(H,\mathcal{F}_{H}(m+1)) is surjective. Once h1(F(m))=h1(F(m+1))h^{1}(\mathcal{F}(m))=h^{1}(\mathcal{F}(m+1)), the value never decreases anymore. So h1(F(m))h^{1}(\mathcal{F}(m)) strictly decrease to 0. For mn+h1(F(n))+1m\geq n+h^{1}(\mathcal{F}(n))+1, H1(X,F(m1))=0H^{1}(X,\mathcal{F}(m-1))=0.

Now we estimate the upper bound for h1(F(n))h^{1}(\mathcal{F}(n)) by a polynomial in aibia_{i}-b_{i}.

h1(F(n))=h0(F(n))χ(F(n))=h0(F(n))i=0dai(n+i1i)h^{1}(\mathcal{F}(n))=h^{0}(\mathcal{F}(n))-\chi(\mathcal{F}(n))=h^{0}(\mathcal{F}(n))-\sum\limits_{i=0}^{d}a_{i}\binom{n+i-1}{i}

and

h0(F(n))i=0dbi(n+i1i)h^{0}(\mathcal{F}(n))\leq \sum_{i=0}^{d}b_{i}\binom{n+i-1}{i}

can be done inductively:

h0(F(n))h0(F(n1))+h0(FH(n))h^{0}(\mathcal{F}(n))\leq h^{0}(\mathcal{F}(n-1))+h^{0}(\mathcal{F}_{H}(n))

and h0(FH(n))i=1dbi(n+i2i1)h^{0}(\mathcal{F}_{H}(n))\leq \sum\limits_{i=1}^{d}b_{i}\binom{n+i-2}{i-1} implies h0(F(n))i=0dbi(n+i1i)h^{0}(\mathcal{F}(n))\leq \sum\limits_{i=0}^{d}b_{i}\binom{n+i-1}{i}. So h1(F(n))i=0d(aibi)(n+i1i)h^{1}(\mathcal{F}(n))\leq \sum\limits_{i=0}^{d}(a_{i}-b_{i})\binom{n+i-1}{i}, where n=Pd1(a1b1,,adbd)n=P_{d-1}(a_{1}-b_{1},\dots, a_{d}-b_{d}). We may take Pd(a0b0,,adbd)=n+i=0d(aibi)(n+i1i)P_{d}(a_{0}-b_{0},\dots, a_{d}-b_{d}) = n+\sum\limits_{i=0}^{d}(a_{i}-b_{i})\binom{n+i-1}{i}. ◻

Combining Lemma 13 and Proposition 16, we get the important criterion for boundedness.

Theorem 17 (Kleiman Criterion). Let {Fi}\{\mathcal{F}_{i}\} be a family of coherent sheaf on XX with the same Hilbert polynomial PP. Then this family is bounded if and only if there are constants CiC_{i}, i=0,,d=deg(P)i=0,\dots, d=\deg(P), such that for every Fi\mathcal{F}_{i} there exists an Fi\mathcal{F}_{i} regular sequence of hyperplane sections H1,,HdH_{1},\dots, H_{d} such that h0(Fji)Cih^{0}(\mathcal{F}|_{\cap j\leq i})\leq C_{i}.

Example 18. Let XX be a smooth projective curve over algebraically closed field kk. If {Fi}\{\mathcal{F}_{i}\} is a family of coherent sheaves with h0(Fi)h^{0}(\mathcal{F}_{i}) and rk(Fi)\mathop{\mathrm{rk}}(\mathcal{F}_{i}), then {Fi}\{\mathcal{F}_{i}\} is bounded. This is because h0(FiH)=rk(F)degXh^{0}(\mathcal{F}_{i}|_{H})=\mathop{\mathrm{rk}}(\mathcal{F})\cdot \deg X is bounded.

If {Fi}\{\mathcal{F}_{i}\} is a family of semistable sheaves with fixed Hilbert polynomial, then {Fi}\{\mathcal{F}_{i}\} is bounded.

Grauert-Mülich Theorem

To make a use of Kleiman criterion, we first need to understand the behaviour of semistable sheaves under the restriction to some hypersurface sections. Although for general hypersurface HH, the restriction of semistable sheaf F\mathcal{F} may not be semistable, FH\mathcal{F}|_{H} cannot be so ‘far’ from semistable. The first thing we need to prove is Grauert-Mülich theorem. We begin with some set up on incidence structures.

Let kk be algebraically field of characteristic zero. Let XX be a normal projective variety over kk of dimX2\dim X\geq 2 and fix a very ample sheaf O(1)\mathcal{O}(1) on XX. Denote the linear system O(a)\left| \mathcal{O}(a) \right| by Πa\Pi_{a} and let Za={(D,x)Πa×XxD}Z_{a}=\{(D,x)\in \Pi_{a}\times X|x\in D\} be the incidence variety. We also allow the incidence structures on different linear systems: Let Π=Πa1××Πal\Pi=\Pi_{a_{1}}\times \cdots\times \Pi_{a_{l}} and Z=Za1×X×XZalZ=Z_{a_{1}}\times_{X}\cdots\times_{X} Z_{a_{l}}. Then there are natural projection p:ZΠp:Z\to \Pi and q:ZXq:Z\to X.

Let Va=H0(X,O(a))V_{a}=H^{0}(X,\mathcal{O}(a)) and K\mathcal{K} be the kernel of the natural evaluation map VaOXOX(a)V_{a}\otimes \mathcal{O}_{X}\to \mathcal{O}_{X}(a). Then Za=P(Kˇ)Z_{a}=\mathbb{P}(\check{\mathcal{K}}) and there’s a natural closed immersion ZaP(Vˇ)×XZ_{a}\to \mathbb{P}(\check{V})\times X. qq is the bundle morphism and therefore open. We can compute the relation tangent bundle by Euler sequence:

0OZaqKpO(1)TZa/X00\to \mathcal{O}_{Z_{a}}\to q^{*}\mathcal{K}\otimes p^{*}\mathcal{O}(1)\to \mathcal{T}_{Z_{a}/X}\to 0

ZZ parametrizes the intersection of element in Πai\Pi_{a_{i}} in such a way: For s=(s1,s2,,sl)s=(s_{1},s_{2},\dots, s_{l}) be a closed point in Π\Pi. Each sis_{i} corresponds to a divisor DiD_{i}. Then the fibre p1(s)p^{-1}(s) can be identified by qq with the scheme-theoretic intersection D1D2DlXD_{1}\cap D_{2}\cap \cdots\cap D_{l}\subset X. The relative tangent bundle of ZZ can be similarly computed as TZ/X=p1TZa1/XplTZal/X\mathcal{T}_{Z/X}=p_{1}^{*}\mathcal{T}_{Z_{a_{1}} /X}\oplus\cdots\oplus p_{l}^{*}\mathcal{T}_{Z_{a_{l}} /X}, where pi:ZZaip_{i}:Z\to Z_{a_{i}} are the natural projections. For a coherent sheaf F\mathcal{F} on XX, let E=qF\mathcal{E}=q^{*}\mathcal{F}, from the construction we have Es=FZs\mathcal{E}_{s}=\mathcal{F}|_{Z_{s}}.

Lemma 19. Let F\mathcal{F} be a torsion free coherent sheaf on XX and EqF\mathcal{E}\cong q^{*}\mathcal{F}. Then

There is a nonempty open subset SΠS'\subset \Pi such that the morphism pS:ZSSp_{S'}:Z_{S'}\to S' is flat and for all sSs\in S', the fibre Zs=p1(s)Z_{s}=p^{-1}(s) is a normal irreducible complete intersection of codimension ll in XX.

There is a nonempty dense open subset SSS\subset S' such that the family ES=qFZS\mathcal{E}_{S}=q^{*}\mathcal{F}|_{Z_{S}} is flat over SS and for all sSs\in S, the fibre Es\mathcal{E}_{s} is torsion free.

Proof

Proof. The flatness is a generic condition. The remaining part follows from Bertini theorem, see Ha6 section 2.8.

The flatness is same as above. We reduce to the case of XX smooth first. Let f:XPnf:X\to \mathbb{P}^{n} be the closed immersion defining O(1)\mathcal{O}(1). We can regard F\mathcal{F} as a pure sheaf of dimension dimX\dim X supported on XX. Let SS'' be the open subset which contains point ss that parametrizes regular sequence for F\mathcal{F} and Exti(F,ωX)\mathcal{E}xt^{i}(\mathcal{F},\omega_{X}), i0\forall i\geq 0. Then clearly SS'' is not empty. Let S=SSS=S''\cap S. On each Zs=p1(s)Z_{s}=p^{-1}(s), the torsion-freeness is from the following lemma:

Lemma 20 (Hu&Lehn7). Let XX be a smooth projective variety over kk. For a coherent sheaf F\mathcal{F} of codimension cc, we say F\mathcal{F} satisfies Serre condition Sk,cS_{k,c} if depthFxmin{k,dimOX,xc}\mathop{\mathrm{depth}}\mathcal{F}_{x}\geq \min\{k,\dim\mathcal{O}_{X,x}-c\} for all xSupp(F)x\in \mathop{\mathrm{Supp}}(\mathcal{F}). Then

  1. F\mathcal{F} is pure if and only if F\mathcal{F} satisfies S1,cS_{1,c}.

  2. Let HH be a hypersurface defined by some ample line sheaf L\mathcal{L}. If HH is a F\mathcal{F} regular section and F\mathcal{F} satisfies Sk,cS_{k,c}, then FH\mathcal{F}|_{H} satisfies Sk1,c+1S_{k-1,c+1}.

Use the lemma and induction, one can easily see FZs\mathcal{F}|_{Z_{s}} satisfies S1,ndimX+lS_{1,n-\dim X+l}, which means FZs\mathcal{F}|_{Z_{s}} is pure of dimension dimXl\dim X-l and thus torsion free on ZsZ_{s}. ◻

We may shrink to a smaller open dense set SS such that all the factors are flat. SS is irreducible and thus connected, so μ((Ei/Ei1)s)\mu((\mathcal{E}_{i}/\mathcal{E}_{i-1})_{s}) is a constant for each sSs\in S. We may define μi=μ((Ei/Ei1)s)\mu_{i}=\mu((\mathcal{E}_{i}/\mathcal{E}_{i-1})_{s}). Then

μ1>μ2>>μj1.\mu_{1}>\mu_{2}>\cdots>\mu_{j-1}.

Define the number of gap by

δμ={0 if Es is semistablemax{μiμi+1} otherwise\delta\mu=\left\{\begin{aligned} &0 &&\text{ if }\mathcal{E}_{s} \text{ is semistable}\\ &\max\{\mu_{i}-\mu_{i+1}\} &&\text{ otherwise} \end{aligned}\right.

The Grauert-Mülich theorem gives us an upper bound δμ\delta\mu for sufficient general sSs\in S.

Theorem 21 (Grauert-Mülich). Let F\mathcal{F} be a semistable torsion-free sheaf. Then there is a nonempty open dense subset SS of Π\Pi such that for all sSs\in S, the following inequality holdes:

δμ(FZs)max{ai}i=1laidegX.\delta\mu(\mathcal{F}|_{Z_{s}})\leq \max\{a_{i}\}\cdot\prod_{i=1}^{l} a_{i}\cdot \deg X.

Proof

Proof. The case Es\mathcal{E}_{s} is semistable is trivial. Assume δμ>0\delta\mu>0 and δμ=μiμi+1\delta \mu= \mu_{i}-\mu_{i+1} for specific ii and let E=Ei\mathcal{E}'=\mathcal{E}_{i}, E=E/E\mathcal{E}''=\mathcal{E} /\mathcal{E}'. For all sSs\in S, Es\mathcal{E}_{s}' and Es\mathcal{E}_{s}'' are torsion free and from the uniqueness of Harder-Narasimhan filtration, μmin(Es)=μi\mu_{min}(\mathcal{E}_{s}')=\mu_{i} and μmax(Es)=μi+1\mu_{max}(\mathcal{E}_{s}'')=\mu_{i+1}.

Since torsion-free sheaves are locally free on a open subset, we may let Z0Z_{0} be the maximal open subset of ZSZ_{S} such that EZ0\mathcal{E}|_{Z_{0}} and EZ0\mathcal{E}''|_{Z_{0}} are locally free. Let their ranks be rr and rr'', respectively. The surjection EZ0EZ0\mathcal{E}_{Z_{0}}\to \mathcal{E}_{Z_{0}}'' gives a morphism φ:Z0Grass(F,r)\varphi:Z_{0}\to \mathop{\mathrm{Grass}}(\mathcal{F},r''), and EZ0EZ0\mathcal{E}|_{Z_{0}}\to \mathcal{E}|_{Z_{0}} is the pullback of FU\mathcal{F}\to \mathcal{U}. Let X0X_{0} be the image of Z0Z_{0} in XX, since q:ZXq:Z\to X is the bundle morphism, X0X_{0} is open. Note F\mathcal{F} is torsion free, for any sSs\in S the complement of Z0ZsZ_{0}\cap Z_{s} in ZsZ_{s} has codimension larger than 11, the codimension of complement of X0X_{0} in XX is also larger than 11.

Let

Dφ:TZ/XZ0φTGrass(F,r)/XD\varphi:\mathcal{T}_{Z/X}|_{Z_{0}}\to \varphi^{*}\mathcal{T}_{\mathop{\mathrm{Grass}}(\mathcal{F},r'') /X}

be the relative differential morphism related to φ\varphi. Since TGrass(F,r)/X=Hom(ker(FU),U)\mathcal{T}_{\mathop{\mathrm{Grass}}(\mathcal{F},r'') /X}=\mathop{\mathcal{H}om}(\mathop{\mathrm{ker}}(\mathcal{F}\to \mathcal{U}),\mathcal{U}), we can identify φTGrass(F,r)/X\varphi^{*}\mathcal{T}_{\mathop{\mathrm{Grass}}(\mathcal{F},r'') /X} as Hom(φker(FU),φU)=Hom(EZ0,EZ0)\mathop{\mathcal{H}om}(\varphi^{*}\mathop{\mathrm{ker}}(\mathcal{F}\to \mathcal{U}),\varphi^{*}\mathcal{U})=\mathop{\mathcal{H}om}(\mathcal{E}|_{Z_{0}}',\mathcal{E}|_{Z_{0}}''). Thus DφD\varphi corresponds to

Φ:(ETZ/X)Z0EZ0\Phi:(\mathcal{E}'\otimes \mathcal{T}_{Z /X})|_{Z_{0}}\to \mathcal{E}|_{Z_{0}}''

via the isomorphism Hom((ETZ/X)Z0,EZ0)Hom(TZ/XZ0,Hom(EZ0,EZ0))\mathop{\mathrm{Hom}}((\mathcal{E}'\otimes \mathcal{T}_{Z /X})|_{Z_{0}},\mathcal{E}|_{Z_{0}}'')\cong \mathop{\mathrm{Hom}}(\mathcal{T}_{Z /X}|_{Z_{0}},\mathop{\mathcal{H}om}(\mathcal{E}|_{Z_{0}}',\mathcal{E}|_{Z_{0}}'')).

Next we want to show Φs0\Phi_{s}\neq 0 for general sSs\in S. Suppose on the contrary. We may shrink SS smaller if necessary to make Φ=0\Phi=0. Since qq is faithfully flat, according to Theorem 40, EX0\mathcal{E}|_{X_{0}} is also locally free. Restricting φ\varphi to Z0Z_{0}, we have the following diagram:

Z0Grass(FjX0;r00)X0'q0

q0q_{0} is a smooth morphism with connected fibres. If Φ=0\Phi=0, then Dφ=0D\varphi=0 and in characteristic zero case, this will imply φ\varphi is constant on fibre of q0q_{0}. Then by rigidity lemma, there is a morphism ρ:X0Grass(FX0,r)\rho:X_{0}\to \mathop{\mathrm{Grass}}(\mathcal{F}|_{X_{0}},r''). From the universal property of Grass(FX0,r)\mathop{\mathrm{Grass}}(\mathcal{F}|_{X_{0}},r''), there’s a quotient FX0F\mathcal{F}|_{X_{0}}\to \mathcal{F}'' of rank rr''. Moreover, FX0ZsEsZ0Zs\mathcal{F}|_{X_{0}\cap Z_{s}}''\cong \mathcal{E}''_{s}|_{Z_{0}\cap Z_{s}} for general sSs\in S. Since FX0\mathcal{F}|_{X_{0}} is support on codimension 2\geq 2 sets in XX, any extension F\mathcal{F}''' of F\mathcal{F}'' to XX satisfies μ(F)=μ(F)\mu(\mathcal{F}''')=\mu(\mathcal{F}''). By our assumption, Es\mathcal{E}_{s}'' is a destablizing quotient of Es\mathcal{E}_{s}, this means F\mathcal{F}''' is destablizing quotient of F\mathcal{F}. This contradicts the assumption that F\mathcal{F} is semistable.

A nontrivial Φs\Phi_{s} defines a morphism EsTZ/XZs\mathcal{E}_{s}'\otimes \mathcal{T}_{Z /X}|_{Z_{s}} to Es\mathcal{E}_{s}'' in the quotient category Cohnl,nl1(Zs)\mathop{\mathrm{Coh}}_{n-l,n-l-1}(Z_{s}). Then by Lemma 5, we have the inequality

μmin(EsTZ/XZs)μmax(Es).\mu_{min}(\mathcal{E}_{s}'\otimes \mathcal{T}_{Z /X}|_{Z_{s}})\leq \mu_{max}(\mathcal{E}_{s}'').

Consider the Koszul complex associated to the evaluation map e:VaOXO(a)e:V_{a}\otimes \mathcal{O}_{X}\to \mathcal{O}(a). Taking the last terms, we get a surjection 2VaOX(a)ker(e)=K\wedge^{2} V_{a}\otimes \mathcal{O}_{X}(-a)\to \mathop{\mathrm{ker}}(e)=\mathcal{K} and hence a surjection

2VaqOX(a)pO(1)qKpO(1)TZa/X.\wedge^{2}V_{a}\otimes q^{*}\mathcal{O}_{X}(-a)\otimes p^{*}\mathcal{O}(1)\to q^{*}\mathcal{K}\otimes p^{*}\mathcal{O}(1)\to \mathcal{T}_{Z_{a} /X}.

Using TZ/X=ipiTZai/X\mathcal{T}_{Z /X}=\bigoplus\limits_{i} p_{i}^{*}\mathcal{T}_{Z_{a_{i}} /X}, we have a surjection

(i2VaiO(ai))ZsTZ/XZs.(\bigoplus_{i}\wedge^{2} V_{a_{i}}\otimes \mathcal{O}(-a_{i}))|_{Z_{s}}\to \mathcal{T}_{Z /X}|_{Z_{s}}.

Therefore,

μmin(EsTZ/XZs)μmin(i2VaiO(ai)EZs)=mini{μmin(OZs(ai)Es)}=μmin(Es)max{ai}deg(Zs).\begin{aligned} \mu_{min}(\mathcal{E}_{s}'\otimes\mathcal{T}_{Z /X}|_{Z_{s}})&\geq \mu_{min}(\bigoplus_{i}\wedge^{2}V_{a_{i}}\otimes \mathcal{O}(-a_{i})\otimes \mathcal{E}'|_{Z_{s}})\\&=\min\limits_{i}\{\mu_{min}(\mathcal{O}_{Z_{s}(-a_{i})}\otimes \mathcal{E}_{s}')\}\\&=\mu_{min}(\mathcal{E}_{s}')-\max\{a_{i}\}\cdot\deg(Z_{s}).\end{aligned}

In conclusion,

δμ=μiμi+1=μmin(Fs)μmax(Fs)max{ai}deg(Zs)=max{ai}aideg(X).\begin{aligned} \delta\mu=\mu_{i}-\mu_{i+1}&=\mu_{min}(\mathcal{F}_{s}')-\mu_{max}(\mathcal{F}_{s}'')\\&\leq \max\{a_{i}\}\cdot \deg(Z_{s})\\&=\max\{a_{i}\}\cdot \prod a_{i}\cdot \deg(X).\end{aligned}

Corollary 22. Let F\mathcal{F} be a torsion-free semistable sheaf of rank rr on XX. Let YY be the intersection of s<dimXs<\dim X general hyperplanes in OX(1)\left| \mathcal{O}_{X}(1) \right|. Then

μmin(FY)μ(F)r12deg(X)\mu_{min}(\mathcal{F}|_{Y})\geq \mu(\mathcal{F})-\frac{r-1}{2}\deg(X)

and

μmax(FY)μ(F)+r12deg(X).\mu_{max}(\mathcal{F}|_{Y})\leq \mu(\mathcal{F})+\frac{r-1}{2}\deg(X).

Proof

Proof. We only show the inequality for μmax\mu_{max}, μmin\mu_{min} is similar. If FY\mathcal{F}|_{Y} is semistable then there’s nothing to prove. Let μ1,,μj\mu_{1},\dots, \mu_{j} and r1,,rjr_{1},\dots,r_{j} be the slopes and ranks of the factors of the Harder-Narasimhan filtration of FY\mathcal{F}|_{Y}. Note all the rir_{i} are positive integers since the factors are torsion-free. By Theorem 21, we have $$\mu_{i}-\mu_{i+1}\leq \deg X.$$ Take the sum from 1 to ii we get μiμ1(i1)degX\mu_{i}\geq \mu_{1}-(i-1)\deg X. So

μ(F)=i=1jrirμiμ1degXri=1j(i1)riμ1degXri=1r(i1)=μmax(FY)degXr12.\begin{aligned} \mu(\mathcal{F})&= \sum_{i=1}^{j}\frac{r_{i}}{r}\mu_{i}\\& \geq \mu_{1}-\frac{\deg X}{r}\sum_{i=1}^{j}(i-1)r_{i}\\& \geq \mu_{1}-\frac{\deg X}{r}\sum_{i=1}^{r}(i-1)\\& = \mu_{max}(\mathcal{F}|_{Y})-\deg X\cdot\frac{r-1}{2}. \end{aligned}

Semistability and Tensor Products

One thing we need to prove in this section is tensor product preserves semistability. The proof involves Theorem 21 and ampleness of positive degree sheaves, which become true only in characteristic zero case. We need to first figure out the behaviour of semistable sheaves under pullback and pushforward via finite morphisms.

Let f:YXf:Y\to X be a finite morphism of normal projective varieties over kk of dimension nn. Fix an ample line sheaf OX(1)\mathcal{O}_{X}(1), then OY(1)=fOX(1)\mathcal{O}_{Y}(1)=f^{*}\mathcal{O}_{X}(1) is also ample. ff is affine morphism so all the higher direct image vanishes, and Hi(X,fF)=Hi(Y,F)H^{i}(X,f_{*}\mathcal{F})=H^{i}(Y,\mathcal{F}). In particular, the Hilbert polynomial P(F)(m)=P(fF)(m)P(\mathcal{F})(m)=P(f_{*}\mathcal{F})(m) and therefore ff_{*} preserves the dimension of sheaves.

Let A\mathcal{A} be the sheaf of algebras fOYf_{*}\mathcal{O}_{Y}, then A\mathcal{A} is a torsion-free coherent sheaf of rank dd. ff_{*} gives an equivalence between the category of coherent sheaves on YY and the category of coherent sheaves on XX with A\mathcal{A}-module structure. A\mathcal{A} is torsion-free and thus locally free in codimension 1, which means ff is flat in codimension 1. ff^{*} is exact functor from the quotient category Cohn,n1(X)\mathrm{Coh}_{n,n-1}(X) to Cohn,n1(Y)\mathrm{Coh}_{n,n-1}(Y).

For a pure sheaf F\mathcal{F} of dimension mm, suppose there’s a nn-dimensional quotient G\mathcal{G} of fFf_{*}\mathcal{F}. G\mathcal{G} admits a natural A\mathcal{A}-module structure, so there’s a coherent OY\mathcal{O}_{Y}-module G\mathcal{G}', which is a mm-dimensional quotient of F\mathcal{F}. This contradicts the assumption that F\mathcal{F} is pure. Therefore ff_{*} preserves the purity of sheaves.

Assume F\mathcal{F} is pure of dimension nn which is torsion-free in codimension 1 in Coh(X)\mathrm{Coh}(X). Since deg(fF)=ddeg(F)\deg(f^{*}\mathcal{F})=d\deg(\mathcal{F}) and rk(fF)=rk(F)\mathop{\mathrm{rk}}(f^{*}\mathcal{F})=\mathop{\mathrm{rk}}(\mathcal{F}), μ(fF)=dμ(F)\mu(f^{*}\mathcal{F})=d\mu(\mathcal{F}).

Assume G\mathcal{G} is pure of dimension nn which is torsion-free in codimension 1 in Coh(Y)\mathrm{Coh}(Y). Then c1(OY(1))n=dc1(OX(1))nc_{1}(\mathcal{O}_{Y}(1))^{n}=d\cdot c_{1}(\mathcal{O}_{X}(1))^{n} and degY=ddegX\deg Y=d\deg X. Since P(G)(m)=P(fG)(m)P(\mathcal{G})(m)=P(f_{*}\mathcal{G})(m), we have rk(fG)=drk(G)\mathop{\mathrm{rk}}(f_{*}\mathcal{G})=d\mathop{\mathrm{rk}}(\mathcal{G}). Note that

deg(A)=αd1(OY)rk(A)αd1(OX)=αd1(OY)dαd1OX,\deg(\mathcal{A})=\alpha_{d-1}(\mathcal{O}_{Y})-\mathop{\mathrm{rk}}(\mathcal{A})\alpha_{d-1}(\mathcal{O}_{X})=\alpha_{d-1}(\mathcal{O}_{Y})-d\cdot \alpha_{d-1}\mathcal{O}_{X},

deg(G)=αd1(G)rk(G)αd1(OY)=αd1(fG)rk(fG)αd1(OX)rk(G)deg(A).\deg(\mathcal{G})=\alpha_{d-1}(\mathcal{G})-\mathop{\mathrm{rk}}(\mathcal{G})\alpha_{d-1}(\mathcal{O}_{Y})=\alpha_{d-1}(f_{*}\mathcal{G})-\mathop{\mathrm{rk}}(f_{*}\mathcal{G})\alpha_{d-1}(\mathcal{O}_{X})-\mathop{\mathrm{rk}}(\mathcal{G})\deg(\mathcal{A}).

We have μ(G)=d(μ(fG)μ(A))\mu(\mathcal{G})=d(\mu(f_{*}\mathcal{G})-\mu(\mathcal{A})).

In characteristic zero case, we have the following lemma:

Lemma 23. Let F\mathcal{F} be a nn-dimensional coherent sheaf on XX. Then F\mathcal{F} is semistable if and only if fFf^{*}\mathcal{F} is semistable.

Proof

Proof. F\mathcal{F} is torsion-free in codimension 1 if and only if fFf^{*}\mathcal{F} is torsion-free, so we are allowed to work in the category Cohn,n1(Y)\mathrm{Coh}_{n,n-1}(Y).

We first show the if direction: Suppose there is subsheaf E\mathcal{E} of F\mathcal{F} such that μ(E)>μ(F)\mu(\mathcal{E})>\mu(\mathcal{F}), then μ(fE)>μ(F)\mu(f^{*}\mathcal{E})>\mu(\mathcal{F}). This leads to a contradiction.

Then we show the only if direction: Let KK be the splitting field of the function field K(Y)K(Y) over K(X)K(X). Let ZZ be the normalization of YY in KK, then we have finite morphisms ZYXZ\to Y\to X. By pulling back fFf^{*}\mathcal{F} to ZZ, we may consider the finite morphism g:ZXg:Z\to X. Note that K(Z)K(Z) is Galois over K(X)K(X), ZXZ\to X is a Galois cover with Galois group GG. Suppose gFg^{*}\mathcal{F} is not semistable and it’s maximal destablizing sheaf E\mathcal{E}. Since E\mathcal{E} is unique, it’s invariant under the action of GG. By Theorem 43, there’s a coherent subsheaf FF\mathcal{F}'\subset \mathcal{F} such that fFf^{*}\mathcal{F}' isomorphic to E\mathcal{E} in codimension 1. Then μ(F)>μ(F)\mu(\mathcal{F}')>\mu(\mathcal{F}) and we have a contradiction. ◻

We will omit the proof of the next lemma here and refer to Ma11.

Lemma 24. Let XX be a projective normal variety over algebraically closed field kk and let OX(1)\mathcal{O}_{X}(1) be a very ample line sheaf. For integer dd there exist a projective normal variety XX' with very ample line sheaf OX(1)\mathcal{O}_{X'}(1) and a finite morphism f:XXf:X'\to X such that fOX(1)OX(d)f^{*}\mathcal{O}_{X}(1)\cong \mathcal{O}_{X'}(d). Moreover, if XX is smooth, XX' can be chosen to be smooth.

Proof

Proof. See Corollary 1.15.1 in Ma11. ◻

Using above lemmas and results in Appendix B, we are able to prove the theorem:

Theorem 25. Let XX be a normal projective variety over an algebraically closed field of characteristic zero. If F1\mathcal{F}_{1} and F2\mathcal{F}_{2} are semistable sheaves, then F1F2\mathcal{F}_{1}\otimes \mathcal{F}_{2} is semistable.

Proof

Proof. Suppose on the contrary. Let E\mathcal{E} be a torsion-free destablizing quotient of F1F2\mathcal{F}_{1}\otimes \mathcal{F}_{2}. We first reduce to the case that μ(F1)+μ(F2)μ(E)\mu(\mathcal{F}_{1})+\mu(\mathcal{F}_{2})-\mu(\mathcal{E}) is large enough case. Using Lemma 24, there’s a finite morphism f:XXf:X'\to X such that fOX(1)OX(d)f^{*}\mathcal{O}_{X}(1)\cong \mathcal{O}_{X'}(d) for large dd. μ(fE)\mu(f^{*}\mathcal{E}) are defined with respect to OX(1)\mathcal{O}_{X'}(1). fF1f^{*}\mathcal{F}_{1} and fF2f^{*}\mathcal{F}_{2} are also semistable by Lemma 23, and fEf^{*}\mathcal{E} is a torsion free destablizing quotient of f(F1F2)f^{*}(\mathcal{F}_{1}\otimes \mathcal{F}_{2}). Take

d>degX(rk(F1)+rk(F2)+2)2(μ(F1)+μ(F2)μ(E)),d>\lceil{\frac{\deg X\cdot (\mathop{\mathrm{rk}}(\mathcal{F}_{1})+\mathop{\mathrm{rk}}(\mathcal{F}_{2})+2)}{2(\mu(\mathcal{F}_{1})+\mu(\mathcal{F}_{2})-\mu(\mathcal{E}))}}\rceil,

we have

μ(fF1)+μ(fF2)μ(fE)degX=dμ(F1)+μ(F2)μ(E)degX>rk(F1)+rk(F2)+22=rk(fF1)+rk(fF2)22.\begin{aligned} \frac{\mu(f^{*}\mathcal{F}_{1})+\mu(f^{*}\mathcal{F}_{2})-\mu(f^{*}\mathcal{E})}{\deg X'}&=d\cdot \frac{\mu(\mathcal{F}_{1})+\mu(\mathcal{F}_{2})-\mu(\mathcal{E})}{\deg X}\\ &> \frac{\mathop{\mathrm{rk}}(\mathcal{F}_{1})+\mathop{\mathrm{rk}}(\mathcal{F}_{2})+2}{2}\\ &= \frac{\mathop{\mathrm{rk}}(f^{*}\mathcal{F}_{1})+\mathop{\mathrm{rk}}(f^{*}\mathcal{F}_{2})-2}{2}.\end{aligned}

So we may assume

μ(F1)+μ(F2)μ(E)>degX(rk(F1)+rk(F2)+2)2.\mu(\mathcal{F}_{1})+\mu(\mathcal{F}_{2})-\mu(\mathcal{E})>\frac{\deg X\cdot (\mathop{\mathrm{rk}}(\mathcal{F}_{1})+\mathop{\mathrm{rk}}(\mathcal{F}_{2})+2)}{2}.

According to Bertini theorem, the complete intersection for general dimX1\dim X-1 hyperplanes forms a smooth curve CC. Applying Corollary 22, the Harder-Narasimhan factors satisfy

μ(grjHN(FiC))μ(Fi)degXrk(Fi)12\mu(gr_{j}^{HN}(\mathcal{F}_{i}|_{C}))\geq \mu(\mathcal{F}_{i})-\deg X\cdot \frac{\mathop{\mathrm{rk}}(\mathcal{F}_{i})-1}{2}

for each i=1,2i=1, 2. Let

ni=μ(Fi)degXrk(Fi)121.n_{i}=\lceil{\frac{\mu(\mathcal{F}_{i})}{\deg X}-\frac{\mathop{\mathrm{rk}}(\mathcal{F}_{i})-1}{2}}\rceil-1.

Then

μ(grjHNFi(ni)C)μ(Fi)degX(ni+rk(Fi)12)>0.\mu(gr_{j}^{HN}\mathcal{F}_{i}(-n_{i})|_{C})\geq \mu(\mathcal{F}_{i})-\deg X\cdot (n_{i}+\frac{\mathop{\mathrm{rk}}(\mathcal{F}_{i})-1}{2})>0.

Then grjHN(Fi(ni)C)gr_{j}^{HN}(\mathcal{F}_{i}(-n_{i})|_{C}) is a semistable torsion-free sheaf on CC and therefore a semistable vector bundle by 45. μ(grjHN(Fi(ni)C))>0\mu(gr_{j}^{HN}(\mathcal{F}_{i}(-n_{i})|_{C}))>0 so by Theorem 50 grjHN(Fi(ni)C)gr_{j}^{HN}(\mathcal{F}_{i}(-n_{i})|_{C}) is ample. According to Corollary 49, griHN(F1(n1)C)grjHN(F2(n2)C)gr_{i}^{HN}(\mathcal{F}_{1}(-n_{1})|_{C})\otimes gr_{j}^{HN}(\mathcal{F}_{2}(-n_{2})|_{C}) is ample. Therefore by Proposition 47 (F1F2)(n1n2)C(\mathcal{F}_{1}\otimes \mathcal{F}_{2})(-n_{1}-n_{2})|_{C} is also ample. E(n1n2)C\mathcal{E}(-n_{1}-n_{2})|_{C} as a quotient of ample vector bundle is also ample.

Note that

μ(E(n1n2))=μ(E)(n1+n2)degX<μ(F1)+μ(F2)degX(n1+n2+rk(F1)+rk(F2)+22)=μ(F1)degX(rk(F1)12+n1+1)+μ(F2)degX(rk(F2)12+n2+1)0.\begin{aligned} \mu(\mathcal{E}(-n_{1}-n_{2}))&=\mu(\mathcal{E})-(n_{1}+n_{2})\deg X\\ &<\mu(\mathcal{F}_{1})+\mu(\mathcal{F}_{2})-\deg X\cdot (n_{1}+n_{2}+\frac{\mathop{\mathrm{rk}}(\mathcal{F}_{1})+\mathop{\mathrm{rk}}(\mathcal{F}_{2})+2}{2})\\ &=\mu(\mathcal{F}_{1})-\deg X\cdot (\frac{\mathop{\mathrm{rk}}(\mathcal{F}_{1})-1}{2}+n_{1}+1)\\ &+\mu(\mathcal{F}_{2})-\deg X\cdot (\frac{\mathop{\mathrm{rk}}(\mathcal{F}_{2})-1}{2}+n_{2}+1)\\ &\leq 0.\end{aligned}

So deg(E(n1n2)C)=deg(E(n1n2))<0\deg(\mathcal{E}(-n_{1}-n_{2})|_{C})=\deg(\mathcal{E}(-n_{1}-n_{2}))<0, which contardicts the fact E(n1n2)C\mathcal{E}(-n_{1}-n_{2})|_{C} is ample. ◻

Corollary 26. Let F\mathcal{F} and G\mathcal{G} be torsion-free coherent sheaves on normal projective variety XX. Then

  1. μmin(FG)=μmin(F)+μmax(G)\mu_{min}(\mathcal{F}\otimes\mathcal{G})=\mu_{min}(\mathcal{F})+\mu_{max}(\mathcal{G}).

  2. μmax(FG)=μmax(F)+μmax(G)\mu_{max}(\mathcal{F}\otimes\mathcal{G})=\mu_{max}(\mathcal{F})+\mu_{max}(\mathcal{G}).

Proof

Proof. We only prove for μmax\mu_{max}. One direction is easy: As in Remark 11, pick the maximal destablizing sheaf F\mathcal{F}' and G\mathcal{G}' of F\mathcal{F}, G\mathcal{G} respectively. Then FG\mathcal{F}'\otimes\mathcal{G}' destablizes FG\mathcal{F}\otimes\mathcal{G} and μ(F)+μ(G)=μmax(F)+μmax(G)\mu(\mathcal{F}')+\mu(\mathcal{G}')=\mu_{max}(\mathcal{F})+\mu_{max}(\mathcal{G}). So μmax(FG)μmax(F)+μmax(G)\mu_{max}(\mathcal{F}\otimes\mathcal{G})\geq \mu_{max}(\mathcal{F})+\mu_{max}(\mathcal{G}).

For the other direction, F\mathcal{F} and G\mathcal{G} are locally free in codimension 1, we may work in the cateogory CohdimX,dimX1(X)\mathrm{Coh}_{\dim X,\dim X-1}(X). First we prove for the case G\mathcal{G} is semistable. Let griHN(F)=HNi(F)/HNi1(F)gr_{i}^{HN}(\mathcal{F})=HN_{i}(\mathcal{F}) /HN_{i-1}(\mathcal{F}) be the Harder-Narasimhan filtration of F\mathcal{F}. Then

0=HN0FGHNn(F)G=FG0=HN_{0}\mathcal{F}\otimes\mathcal{G}\subset \cdots\subset HN_{n}(\mathcal{F})\otimes \mathcal{G}=\mathcal{F}\otimes \mathcal{G}

gives a filtration of FG\mathcal{F}\otimes \mathcal{G} with semistable factors and strictly decreasing slope. Thus the uniqueness of Harder-Narasimhan filtration shows that griHN(F)Ggr_{i}^{HN}(\mathcal{F})\otimes \mathcal{G} gives a Harder-Narasimhan filtration of FG\mathcal{F}\otimes\mathcal{G}. HN0(F)GHN_{0}(\mathcal{F})\otimes\mathcal{G} is the maximal destablizing sheaf of FG\mathcal{F}\otimes\mathcal{G} and μmax(FG)=μmax(F)+μmax(G)\mu_{max}(\mathcal{F}\otimes\mathcal{G})=\mu_{max}(\mathcal{F})+\mu_{max}(\mathcal{G}).

For general G\mathcal{G}, we prove μmax(griHN(F)G)=μmax(F)+μmax(G)\mu_{max}(gr_{i}^{HN}(\mathcal{F})\otimes\mathcal{G})=\mu_{max}(\mathcal{F})+\mu_{max}(\mathcal{G}) by induction on ii. The base case is from our discussion above. For i>1i>1, consider the exact sequence

0HNi1(F)GHNi(F)GgriHN(F)G00\to HN_{i-1}(\mathcal{F})\otimes\mathcal{G}\to HN_{i}(\mathcal{F})\otimes\mathcal{G}\to gr_{i}^{HN}(\mathcal{F})\otimes\mathcal{G}\to 0

in the category CohdimX,dimX1\mathrm{Coh}_{\dim X,\dim X-1}. Then by Remark 6,

μmax(HNi1(F)G)μmax(HNi(F)G).\mu_{max}(HN_{i-1}(\mathcal{F})\otimes\mathcal{G})\leq \mu_{max}(HN_{i}(\mathcal{F})\otimes\mathcal{G}).

Let E\mathcal{E} be the maximal destablizing sheaf of HNi(F)GHN_{i}(\mathcal{F})\otimes\mathcal{G}. Let 0EEE/E00\to \mathcal{E}'\to \mathcal{E}\to \mathcal{E}' /\mathcal{E}\to 0 be the induced exact sequence by setting E=EHNi1(F)G\mathcal{E}'=\mathcal{E}\cap HN_{i-1}(\mathcal{F})\otimes\mathcal{G}, then E/E\mathcal{E}' /\mathcal{E} is a subsheaf of griHN(F)Ggr_{i}^{HN}(\mathcal{F})\otimes\mathcal{G}. So we have

μmax(HNi(FG))=μ(E)max{μ(E),μ(E/E)}max{μmax(HNi1(F)G),μmax(griHN(F)G)}=μmax(HNi1(F)G)\begin{aligned} \mu_{max}(HN_{i}(\mathcal{F}\otimes\mathcal{G}))&=\mu(\mathcal{E}) \leq \max\{\mu(\mathcal{E}),\mu(\mathcal{E}' /\mathcal{E})\}\\ &\leq \max\{\mu_{max}(HN_{i-1}(\mathcal{F})\otimes\mathcal{G}),\mu_{max}(gr_{i}^{HN}(\mathcal{F})\otimes\mathcal{G})\}\\ &=\mu_{max}(HN_{i-1}(\mathcal{F})\otimes\mathcal{G})\end{aligned}

Thus μmax(HNi(F)G)=μmax(F)+μmax(G)\mu_{max}(HN_{i}(\mathcal{F})\otimes\mathcal{G})=\mu_{max}(\mathcal{F})+\mu_{max}(\mathcal{G}). ◻

Corollary 27. Let F\mathcal{F} be a torsion-free semistable sheaf on XX. Then all exterior products nF\wedge^{n}\mathcal{F}, all symmetric products SnFS^{n}\mathcal{F} and Hom(F,F)\mathop{\mathcal{H}om}(\mathcal{F},\mathcal{F}) are semistable.

Proof

Proof. Let dimX=d\dim X=d. Note that nF\wedge^{n}\mathcal{F} and SnFS^{n}\mathcal{F} are all direct summands of Fn\mathcal{F}^{\otimes n}. On can easily calculate that μ(Fn)=μ(nF)=μ(SnF)\mu(\mathcal{F}^{\otimes n})=\mu(\wedge^{n}\mathcal{F})=\mu(S^{n}\mathcal{F}), so according to Remark 6, they are semistable.

We show that Fˇ\check{\mathcal{F}} is semistable. Suppose there is a destablizing sheaf E\mathcal{E} of Fˇ\check{\mathcal{F}}. We may assume Fˇ/E\check{\mathcal{F}} /\mathcal{E} is torsion-free, otherwise we may replace E\mathcal{E} by its saturation in Fˇ\check{\mathcal{F}}. Therefore Fˇ/E\check{\mathcal{F}} /\mathcal{E} is locally free in codimension 1. Consider the exact sequence

0EFˇFˇ/E00\to \mathcal{E}\to \check{\mathcal{F}}\to \check{\mathcal{F}} /\mathcal{E}\to 0

in Cohd,d1(X)\mathrm{Coh}_{d,d-1}(X), it’s dual

0(Fˇ/E)ˇFEˇ00\to (\check{\mathcal{F}} /\mathcal{E})^{\check{}}\to \mathcal{F}\to \check{\mathcal{E}}\to 0

in Cohd,d1(X)\mathrm{Coh}_{d,d-1}(X) is still exact. Then μ(E)>μ(Fˇ)\mu(\mathcal{E})>\mu(\check{\mathcal{F}}) implies μ(F)>μ(Eˇ)\mu(\mathcal{F})>\mu(\check{\mathcal{E}}), which contradict the assumption F\mathcal{F} is semistable. In codimension 1 F\mathcal{F} is locally free so Hom(F,F)\mathop{\mathcal{H}om}(\mathcal{F},\mathcal{F}) is isomorphic to FFˇ\mathcal{F}\otimes\check{\mathcal{F}} in Cohd,d1(X)\mathrm{Coh}_{d,d-1}(X). Since F\mathcal{F} and Fˇ\check{\mathcal{F}} are semistable, Hom(F,F)\mathop{\mathcal{H}om}(\mathcal{F},\mathcal{F}) is semistable. ◻

Boundedness in Zero Characteristic

In this section, we will use Theorem 17 to show the boundedness of semistable sheaves with fixed Hilbert polynomial. The base field kk is assumed to be algebraically closed with characteristic zero. Let [x]+=max{x,0}[x]_{+}=\max\{x,0\} for any real number xx.

We first deal with the case that XX is normal.

Lemma 28. Let XX be a normal projective variety of dimension dd. Let F\mathcal{F} be a torsion-free sheaf on XX. Then for any F\mathcal{F}-regular sequence of hyperplane sections H1,,HdH_{1},\dots, H_{d} and Xv=H1HdvX_{v}=H_{1}\cap \cdots\cap H_{d-v} the following inequality holds for all v=1,,dv=1,\dots, d:

h0(Xv,FXv)rk(F)degX1v![μmax(FX1)degX+v]+v.\frac{h^{0}(X_{v},\mathcal{F}|_{X_{v}})}{\mathop{\mathrm{rk}}(\mathcal{F})\cdot \deg X}\leq \frac{1}{v!}\left[\frac{\mu_{max}(\mathcal{F}|_{X_{1}})}{\deg X}+v\right]_{+}^{v}.

Proof

Proof. The proof proceeds by induction on vv. For the base case, let griHN(FX1)gr_{i}^{HN}(\mathcal{F}|_{X_{1}}), i=1,,li=1,\dots, l be the Harder-Narasimhan filtration of FX1\mathcal{F}|_{X_{1}}. Taking the global sections one have

h0(X1,FX1)i=1lh0(X1,griHN(FX1)).h^{0}(X_{1},\mathcal{F}|_{X_{1}})\leq \sum_{i=1}^{l}h^{0}(X_{1},gr_{i}^{HN}(\mathcal{F}|_{X_{1}})).

We may assume FX1\mathcal{F}|_{X_{1}} is semistable and therefore μmax(FX1)=μ(FX1)\mu_{max}(\mathcal{F}|_{X_{1}})=\mu(\mathcal{F}|_{X_{1}}). For any n0n\geq 0, we can take FX1\mathcal{F}|_{X_{1}}-regular section HH in OX1(n)\mathcal{O}_{X_{1}}(n) and an exact sequence

0FX1(n)FX1FX1H00\to \mathcal{F}|_{X_{1}}(-n)\to \mathcal{F}|_{X_{1}}\to \mathcal{F}|_{X_{1}\cap H}\to 0

So

h0(X1,FX1)h0(X1,FX1)+nrk(F)degXh^{0}(X_{1},\mathcal{F}|_{X_{1}})\leq h^{0}(X_{1},\mathcal{F}|_{X_{1}})+n\cdot\mathop{\mathrm{rk}}(\mathcal{F})\cdot \deg X

For nμ(FX1)degX+1n\geq \lceil{\frac{\mu(\mathcal{F}|_{X_{1}})}{\deg X}}\rceil+1, we have h0(X1,FX1(n))=hom(OX1(n),FX1)=0h^{0}(X_{1},\mathcal{F}|_{X_{1}}(-n))=\mathop{\mathrm{hom}}(\mathcal{O}_{X_{1}}(n),\mathcal{F}|_{X_{1}})=0. Thus we get our desired upper bound.

Assume the inequality for v1v-1 with v2v\geq 2. Consider the exact
sequence

0FXv(k1)FXv(k)FXv1(k)00\to \mathcal{F}|_{X_{v}}(-k-1)\to \mathcal{F}|_{X_{v}}(-k)\to \mathcal{F}|_{X_{v-1}}(-k)\to 0

for k=0,1,2,k=0,1,2,\dots, inductively we have

h0(Xv,FXv)h0(Xv,FXv(n))+k=0n1h0(Xv1,FXv1(k))k=0h0(Xv1,FXv1(k)).\begin{aligned} h^{0}(X_{v},\mathcal{F}|_{X_{v}})&\leq h^{0}(X_{v},\mathcal{F}|_{X_{v}}(-n))+\sum_{k=0}^{n-1}h^{0}(X_{v-1},\mathcal{F}|_{X_{v-1}}(-k))\\ &\leq \sum_{k=0}^{\infty}h^{0}(X_{v-1},\mathcal{F}|_{X_{v-1}}(-k)).\end{aligned}

Similarly, h0(Xv1,FXv1(k))h^{0}(X_{v-1},\mathcal{F}|_{X_{v-1}}(-k)) vanishes for k>μmax(FXv1)k>\mu_{max}(\mathcal{F}|_{X_{v-1}}) so the summation is actually finite. Using the induction hypothesis and replace the summation by integral, we have

h0(Xv,FXv)rk(F)degX1(v1)!1C[μmax(FX1)degX+v1t]+v1dt\frac{h^{0}(X_{v},\mathcal{F}|_{X_{v}})}{\mathop{\mathrm{rk}}(\mathcal{F})\cdot \deg X}\leq \frac{1}{(v-1)!}\int_{-1}^{C}\left[\frac{\mu_{max}(\mathcal{F}_{X_{1}})}{\deg X}+v-1-t\right]_{+}^{v-1}dt

where CC is the maximum of -1 and the smallest zero of the integrand. By simple calculus we have the right hand side of the lemma. ◻

Using above lemma and Corollary 22, we immediately have

Corollary 29. Let XX be a normal projective variety of dimension dd and F\mathcal{F} is torsion-free sheaf on XX. For general hyperplanes H1,,HdH_{1},\dots, H_{d} in OX(1)\left| \mathcal{O}_{X}(1) \right|, the following inequality holdes for all v=1,,dv=1,\dots, d:

h0(Xv,FXv)rk(F)degX1v![μmax(F)degX+rk(F)12+v]+v.\frac{h^{0}(X_{v},\mathcal{F}|_{X_{v}})}{\mathop{\mathrm{rk}}(\mathcal{F})\cdot \deg X}\leq \frac{1}{v!}\left[\frac{\mu_{max}(\mathcal{F})}{\deg X}+\frac{\mathop{\mathrm{rk}}(\mathcal{F})-1}{2}+v\right]_{+}^{v}.

Corollary 29 gives a uniform bound for torsion-free semistable sheaves with fixed Hilbert polynomial (note μmax(F)=μ(F)\mu_{max}(\mathcal{F})=\mu(\mathcal{F})) on normal projective variety. Combining it with 17, we get the boundedness for the specific case.

Theorem 30 (Le Potier-Simpson). Let XX be a dd-dimensional projective variety and F\mathcal{F} be a torsion free sheaf on XX. Let r(F)=αd(F)r(\mathcal{F})=\alpha_{d}(\mathcal{F}) be the multiplicity of F\mathcal{F}. Then there is a F\mathcal{F}-regular sequence of hyperplane sections H1,,HdH_{1},\dots, H_{d} and Xv=H1HdvX_{v}=H_{1}\cap \cdots\cap H_{d-v} such that the following inequality holds for all v=1,,dv=1,\dots, d:

h0(Xv,FXv)r(F)1v![μ^max(F)+r(F)2+r(F)+d21]+v\frac{h^{0}(X_{v},\mathcal{F}|_{X_{v}})}{r(\mathcal{F})}\leq \frac{1}{v!}\left[\hat{\mu}_{max}(\mathcal{F})+r(\mathcal{F})^{2}+\frac{r(\mathcal{F})+d}{2}-1\right]_{+}^{v}

Proof

Proof. Let i:XPNi:X\to \mathbb{P}^{N} be the closed immersion corresponding to the very ample sheaf OX(1)\mathcal{O}_{X}(1). Consider a Nd1N-d-1-dimensional linear subspace LPNL\subset \mathbb{P}^{N} which does not intersect XX. Let π:PNLYPd\pi:\mathbb{P}^{N}-L\to Y\cong \mathbb{P}^{d} be the projection with center LL, π\pi is a finite morphism. Denote πOX\pi_{*}\mathcal{O}_{X} by A\mathcal{A}. πF\pi_{*}\mathcal{F} is also torsion-free and r(F)=αd(πF)=rk(πF)r(\mathcal{F})=\alpha_{d}(\pi_{*}\mathcal{F})=\mathop{\mathrm{rk}}(\pi_{*}\mathcal{F}). We also have

μ^(F)=μ^(πF)=μ(πF)αd(OY)+μ^(OY)=μ(πF)+d+12.\hat{\mu}(\mathcal{F})=\hat{\mu}(\pi_{*}\mathcal{F})=\frac{\mu(\pi_{*}\mathcal{F})}{\alpha_{d}(\mathcal{O}_{Y})}+\hat{\mu}(\mathcal{O}_{Y})=\mu(\pi_{*}\mathcal{F})+\frac{d+1}{2}.

A πF\pi_{*}\mathcal{F}-regular sequence HiH_{i}' in YPdY\cong \mathbb{P}^{d} naturally induces an F\mathcal{F}-regular sequence HiH_{i} in XX. Denote Yv=H1HvY_{v}=H_{1}'\cap \cdots\cap H_{v}', then π(FXv)=(πF)Yv\pi_{*}(\mathcal{F}|_{X_{v}})=(\pi_{*}\mathcal{F})|_{Y_{v}}. Apply Corollary 29 to πF\pi_{*}\mathcal{F}, there is an inequality for v=1,,dv=1,\dots,d:

h0(Xv,FXv)rk(πF)1v![μmax(πF)+rk(πF)12+v]+v.\frac{h^{0}(X_{v},\mathcal{F}|_{X_{v}})}{\mathop{\mathrm{rk}}(\pi_{*}\mathcal{F})}\leq \frac{1}{v!}\left[\mu_{max}(\pi_{*}\mathcal{F})+\frac{\mathop{\mathrm{rk}}(\pi_{*}\mathcal{F})-1}{2}+v\right]_{+}^{v}.

We need to estimate μmax(πF)\mu_{max}(\pi_{*}\mathcal{F}) by μ^max(πF)\hat{\mu}_{max}(\pi_{*}\mathcal{F}). First we show that μmin(A)r(F)2\mu_{min}(\mathcal{A})\geq -r(\mathcal{F})^{2}: Clearly A\mathcal{A} is torsion-free sheaf. The injection AHom(πF,πF)\mathcal{A}\to \mathop{\mathcal{H}om}(\pi_{*}\mathcal{F},\pi_{*}\mathcal{F}) shows that rk(A)rk(πF)2=r(F)2\mathop{\mathrm{rk}}(\mathcal{A})\leq \mathop{\mathrm{rk}}(\pi_{*}\mathcal{F})^{2}=r(\mathcal{F})^{2}. Let W=OY(1)Nd\mathcal{W}=\mathcal{O}_{Y}(-1)^{N-d}, then XX is a closed subscheme of the vector bundle π:PNLSpecSWY\pi: \mathbb{P}^{N}-L\cong \mathop{\mathrm{Spec}}S^{*}W\to Y, so there is a surjection φ:SWA\varphi:S^{*}\mathcal{W}\to \mathcal{A}. Consider the filtration of A\mathcal{A} by ascending OY\mathcal{O}_{Y}-modules

FiA=φ(OYWSiW)F_{i}\mathcal{A}=\varphi(\mathcal{O}_{Y}\oplus\mathcal{W}\oplus\cdots\oplus S^{i}\mathcal{W})

Since A\mathcal{A} is coherent, only finitely many factors griF(A)gr_{i}^{F}(\mathcal{A}) are not zero. Since WgriF(A)gri+1F(A)\mathcal{W}\otimes gr_{i}^{F}(\mathcal{A})\to gr_{i+1}^{F}(\mathcal{A}) is surjective, once griF(A)gr_{i}^{F}(\mathcal{A}) has torsion, all grjF(A)gr_{j}^{F}(\mathcal{A}) has torsion for jij\geq i. If griF(A)gr_{i}^{F}(\mathcal{A}) has no torsion then irk(A)i\leq \mathop{\mathrm{rk}}(\mathcal{A}), so the cokernel of φ:OYWSrk(A)WA\varphi:\mathcal{O}_{Y}\oplus \mathcal{W}\oplus\cdots\oplus S^{\mathop{\mathrm{rk}}(\mathcal{A})}\mathcal{W}\to \mathcal{A} has torsion. Hence

μmin(A)μmin(Srk(A)W)=μ(Srk(A)W)=rk(A)μ(W)=rk(A)\mu_{min}(\mathcal{A})\geq \mu_{min}(S^{\mathop{\mathrm{rk}}(\mathcal{A})}\mathcal{W})=\mu(S^{\mathop{\mathrm{rk}}(\mathcal{A})\mathcal{W}})=\mathop{\mathrm{rk}}(\mathcal{A})\mu(\mathcal{W})=-rk(\mathcal{A})

and $$\mu_{min}(\mathcal{A})\geq -r(\mathcal{F})^{2}.$$

Let E\mathcal{E} be the maximal destablizing sheaf of πF\pi_{*}\mathcal{F} and E\mathcal{E}' be its image under the multiplication morphism AEAπFπE\mathcal{A}\otimes\mathcal{E}\to \mathcal{A}\otimes \pi_{*}\mathcal{F}\to \pi_{*}\mathcal{E}. E\mathcal{E}' is the A\mathcal{A}-submodule of πF\pi_{*}\mathcal{F} generated by E\mathcal{E}, and EπE\mathcal{E}'\cong \pi_{*}\mathcal{E}'' for some OX\mathcal{O}_{X}-submodule E\mathcal{E}'' of F\mathcal{F}. So

μ^max(F)μ^(E)=μ^(E)=μ(E)+μ^(OY),\hat{\mu}_{max}(\mathcal{F})\geq \hat{\mu}(\mathcal{E}'')=\hat{\mu}(\mathcal{E}')=\mu(\mathcal{E}')+\hat{\mu}(\mathcal{O}_{Y}),

by Lemma 5,

μ(E)+μ^(OY)μmin(AE)+d+12\mu(\mathcal{E}')+\hat{\mu}(\mathcal{O}_{Y})\geq \mu_{min}(\mathcal{A}\otimes\mathcal{E})+\frac{d+1}{2}

by Corollary 26,

μmin(AE)+d+12=μ(E)+μmin(A)+d+12μmax(πF)r(F)2+d+12.\begin{aligned} \mu_{min}(\mathcal{A}\otimes\mathcal{E})+\frac{d+1}{2}&=\mu(\mathcal{E})+\mu_{min}(\mathcal{A})+\frac{d+1}{2}\\ &\geq \mu_{max}(\pi_{*}\mathcal{F})-r(\mathcal{F})^{2}+\frac{d+1}{2}.\end{aligned}

Therefore we have

μmax(πF)+rk(πF)12+vμ^max(F)+r(F)2+r(F)12+d12.\mu_{max}(\pi_{*}\mathcal{F})+\frac{\mathop{\mathrm{rk}}(\pi_{*}\mathcal{F})-1}{2}+v \leq \hat{\mu}_{max}(\mathcal{F})+r(\mathcal{F})^{2}+\frac{r(\mathcal{F})-1}{2}+\frac{d-1}{2}.

Theorem 31. Let XX be a projective variety over kk. The family of semistable sheaves on XX with fixed Hilbert polynomial is bounded.

Proof

Proof. Immediate corollary from Theorem 17 and Theorem 30. ◻

Boundedness in General Characteristic

When XX is a smooth projective curve over algebraically closed field kk, the semistability of sheaves behave well in arbitrary characteristic.

Theorem 32. {Fi}\{\mathcal{F}_{i}\} is a family of semistable sheaves with fixed Hilbert polynomial, then {Fi}\{\mathcal{F}_{i}\} is bounded.

Proof

Proof. We show that there is an integer mm such that Fi\mathcal{F}_{i} is mm-regular for all ii. Assume the Hilbert polynomial is given by P(n)=nrk(Fi)deg(O(1))+deg(Fi)+rk(Fi)(1g)P(n)=n\cdot\mathop{\mathrm{rk}}(\mathcal{F}_{i})\cdot\deg(\mathcal{O}(1))+\deg(\mathcal{F}_{i})+\mathop{\mathrm{rk}}(\mathcal{F}_{i})(1-g), so all the sheaves have the same rank and degree. By Serre duality, H1(X,Fi(m1))=Hom(Fi(m1),ω)ˇH^{1}(X,\mathcal{F}_{i}(m-1))=\mathop{\mathrm{Hom}}(\mathcal{F}_{i}(m-1),\omega)^{\check{}}. Note Fi(m1)\mathcal{F}_{i}(m-1) and ω\omega are all semistable. Set

m=2rk(Fi)g(X)2rk(Fi)deg(Fi)deg(O(1))+1m=\lceil{\frac{2\mathop{\mathrm{rk}}(\mathcal{F}_{i})g(X)-2\mathop{\mathrm{rk}}(\mathcal{F}_{i})-\deg(\mathcal{F}_{i})}{\deg(\mathcal{O}(1))}+1}\rceil

and using Lemma 5, Hom(Fi(m1),ω)=0\mathop{\mathrm{Hom}}(\mathcal{F}_{i}(m-1),\omega)=0 for all ii. Thus {Fi}\{F_{i}\} is bound. ◻

Dimension 2 case is much more complicated since there is no good estimation for H1(X,F)H^{1}(X,\mathcal{F}). We will show that the family of semistable vector bundle with rank 2 on a smooth surface is bounded. Let XX be a smooth projective surface and O(1)\mathcal{O}(1) be a very ample line sheaf. Let F(P)\mathfrak{F}(P) be the family consists of rank 2 torsion-free semistable sheaf with fixed Hilbert polynomial PP.

Lemma 33 (Ta13). There are integer n1n_{1} and n2n_{2} such that for any FF(P)\mathcal{F}\in \mathfrak{F}(P), there is a subsheaf E\mathcal{E} of F\mathcal{F} with n1deg(E)n2n_{1}\leq \deg(\mathcal{E})\leq n_{2}.

Proof

Proof. First F\mathcal{F} is semistable so one can set n2=deg(F)2n_{2}=\frac{\deg (\mathcal{F})}{2}, then for all rank 1 subsheaf E\mathcal{E} we have deg(E)deg(F)2\deg(\mathcal{E})\leq \frac{\deg (\mathcal{F})}{2}.

We can choose n1>0n_{1}>0 such that P(F)(n)>0P(\mathcal{F})(n)>0 for all FF(P)\mathcal{F}\in \mathfrak{F}(P). We may also assume deg(F)2n1+2deg(ω)\deg (\mathcal{F})\geq -2n_{1}+2\deg (\omega) so deg(Fˇ(m)ω)<0\deg(\check{\mathcal{F}}(-m)\otimes\omega)<0. Note that any global section will induce a morphism OXFˇ(m)ω\mathcal{O}_{X}\to\check{\mathcal{F}}(-m)\otimes\omega, which contradicts the fact Fˇ(m)ω\check{\mathcal{F}}(-m)\otimes\omega is semistable with negative degree. So

H0(X,Fˇ(m)ω)=Hom(F(m),ω)=H2(X,F(m))ˇ=0.H^{0}(X,\check{\mathcal{F}}(-m)\otimes\omega)=\mathop{\mathrm{Hom}}(\mathcal{F}(m),\omega)=H^{2}(X,\mathcal{F}(m))^{\check{}}=0.

Thus H0(X,F(m))0H^{0}(X,\mathcal{F}(m))\neq 0 for all F\mathcal{F} and a global section induces the morphism OXF(m)\mathcal{O}_{X}\to \mathcal{F}(m). Let the image be G\mathcal{G}, then deg(G(n1))0\deg(\mathcal{G}(n_{1}))\geq 0 and deg(G)n1\deg(\mathcal{G})\geq -n_{1}. ◻

Theorem 34. F(P)\mathfrak{F}(P) is bounded.

Proof

Proof. We will use Theorem 17 to prove this theorem. From Lemma 15 and the definition of Castelnuovo-Mumford regularity, if the family {F(m)FF(P)}\{\mathcal{F}(m)|\mathcal{F}\in \mathfrak{F}(P)\} is bounded, then F(P)\mathfrak{F}(P) is bounded. So we may let mm small enough and assume deg(F)<0\deg(\mathcal{F})<0 for all FF(P)\mathcal{F}\in \mathfrak{F}(P). Since any nonzero global section of F\mathcal{F} will induce a morphism OXF\mathcal{O}_{X}\to \mathcal{F}, which will contradict to the assumption F\mathcal{F} is semistable. Thus H0(X,F)=0H^{0}(X,\mathcal{F})=0 for all F\mathcal{F}.

For general hyperplane H1H_{1}, H2H_{2} in the linear system O(1)\left| \mathcal{O}(1) \right|, h0(FH1H2)=2degXh^{0}(\mathcal{F}|_{H_{1}\cap H_{2}})=2\deg X is bounded.

Now we show h0(FH)h^{0}(\mathcal{F}|_{H}) is bounded for general hyperplane HH. According to Lemma 33, there are constants n1n_{1}, n2n_{2} and a subsheaf EF\mathcal{E}\subset \mathcal{F} such that n1deg(E)n2n_{1}\leq \deg(\mathcal{E})\leq n_{2}. We may assume XHX\cap H is smooth curve and EH\mathcal{E}|_{H}, (F/E)H(\mathcal{F}/\mathcal{E})|_{H} are locally free. Let gg be the genus of XHX\cap H for general HH. Let n3=deg(F)n1n_{3}=\deg(\mathcal{F})-n_{1}, n4=deg(F)n2n_{4}=\deg(\mathcal{F})-n_{2} and n=max{0,2gn1,2gn4}n=\max\{0,2g-n_{1},2g-n_{4}\}. Then n4deg(F/E)n3n_{4}\leq \deg(\mathcal{F}/\mathcal{E})\leq n_{3}. Since deg(EH)>2g2\deg(\mathcal{E}|_{H})>2g-2 and deg((F/E)H)>2g2\deg ((\mathcal{F}/\mathcal{E})|_{H})>2g-2, h1(EH)=0h^{1}(\mathcal{E}|_{H})=0 and h1((F/E)H)=0h^{1}((\mathcal{F}/\mathcal{E})|_{H})=0. By Riemann-Roch theorem,

h0(EH(n))n+1g+n2,h^{0}(\mathcal{E}|_{H}(n))\leq n+1-g+n_{2},

h0((F/E)H(n))n+1g+deg(F)n1.h^{0}((\mathcal{F}/\mathcal{E})|_{H}(n))\leq n+1-g+\deg(\mathcal{F})-n_{1}.

So

h0(FH)h0(EH)+h0((F/E)H)h0(EH(n))+h0((F/E)H(n))22g+2n+n2n1\begin{aligned} h^{0}(\mathcal{F}|_{H})&\leq h^{0}(\mathcal{E}|_{H})+h^{0}((\mathcal{F}/\mathcal{E})|_{H})\\ &\leq h^{0}(\mathcal{E}|_{H}(n))+h^{0}((\mathcal{F}/\mathcal{E})|_{H}(n))\\ &\leq 2-2g+2n+n_{2}-n_{1}\end{aligned}

is bounded. ◻

In higher dimensional, the traditional approach for boundedness won’t work when the base field is of positive characteristic. Theorem 21, Lemma 23 and Theorem 50 strongly depend on the assumption of characteristic. The problem in positive characteristic case is completely solved by Langer in his recent work Langer8.

In fact, Gieseker provided a counter-example for Lemma 23 in positive characteristic in Ge2: Assume the base field has characteristic pp. Let F:XXF:X\to X be the absolute Frobenius morphism, i.e. the morphism which is an identity on topological space and sends xxpx\mapsto x^{p} on OX\mathcal{O}_{X}.

Example 35 (Ge2). Let pp be any positive integer and g2g\geq 2, then there is a curve XX of genus gg over a field of characteristic pp, and a semistable bundle E\mathcal{E} of rank 2 on XX, such that FEF^{*}\mathcal{E} is not semistable.

The argument using ampleness does not work in positive characteristic case either. To make result similar to Lemma 25, Langer introduced strongly semistable in Langer8.

Definition 36. A coherent sheaf F\mathcal{F} in characteristic pp is strongly semistable if (Fn)F(F^{n})^{*}\mathcal{F} is semistable for all n0n\geq 0.

Langer showed in terms of strongly semistable, the tensor product of strongly semistable sheaves is still strongly semistable. He also improved the Bogomolov inequality and restriction theorems to general characteristic case and used them to show the boundness for family of sheaves with upper bound in μmax\mu_{max}.

There are several types restriction theorem for general characteristic case. For example, Mehta and Ramanathan proved their restriction theorem:

Theorem 37 (Mehta, Ramanathan). Let XX be a smooth projective variety of dimension n2n\geq 2 and let O(1)\mathcal{O}(1) be a very ample line sheaf. Let F\mathcal{F} be a semistable sheaf. Then there is an integer a0a_{0} such that for all aa0a\geq a_{0} there is an open dense subset UaO(a)U_{a}\subset \left| \mathcal{O}(a) \right| such that for all DUaD\in U_{a} the divisor DD is smooth and EDE|_{D} is semistable.

However, we cannot directly apply this theorem to prove the boundedness. Maruyama showed a theorem that improves a0a_{0} to 1 when the rank of sheaves is small in Ma10:

Theorem 38. Let XX be a smooth projective variety of dimension n2n\geq 2 and let O(1)\mathcal{O}(1) be a very ample line sheaf. Let F\mathcal{F} be a torsion-free semistable sheaf on XX and rk(F)<dimX\mathop{\mathrm{rk}}(\mathcal{F})<\dim X. Then for general hyperplane section HH in O(1)\left| \mathcal{O}(1) \right|, the restriction FH\mathcal{F}|_{H} is semistable.

Maruyama proved boundedness of semistable bundles of rank 2 with fixed Hilbert polynomial on smooth projective varieties using the above theorem. See Ma10 for more details.

Results from Descent Theory

In this section we introduce some basic results from descent of quasicoherent sheaves. We need faithfully flat descent and Galois descent in the Theorem 21 and Lemma 23. The proof of theorems in this section will be omitted and we refer chapter 14 Grotz&We3 and Stacks[0238]1 for details.

Let p:SSp:S'\to S be a faithfully flat quasicompact morphism of schemes. Let S=S×SSS''=S'\times_{S}S' and S=S×SS×SSS'''=S'\times_{S}S'\times_{S}S'' and the projections be pi:SSp_{i}:S''\to S' and pij:SSp_{ij}:S'''\to S''.

Definition 39. Let F\mathcal{F} be a quasicoherent sheaf on SS'. A descent datum of F\mathcal{F} is a OS\mathcal{O}_{S'}-module morphism φ:p1Fp2F\varphi:p_{1}^{*}\mathcal{F}\xrightarrow{\simeq}p_{2}^{*}\mathcal{F} satisfying the cocycle condition

p23φp12φ=p13φ,p_{23}^{*}\varphi\circ p_{12}^{*}\varphi=p_{13}^{*}\varphi,

i.e. φ\varphi makes the following diagram commutes:

p¤12p¤2Fp¤23p¤1Fp¤12p¤1Fp¤23p¤2Fp¤13p¤1Fp¤13p¤2Fp¤23'p¤12'p¤13'

We can define the category Qcoh(S/S)\mathrm{Qcoh}(S' /S) of quasicoherent sheaves on SS' with the descent datum. More precisely, the object of Qcoh(S/S)\mathrm{Qcoh}(S' /S) is pair (F,φ)(\mathcal{F},\varphi) the quasicoherent sheaves on SS' with descent datum φ\varphi. The morphism from (F,φ)(\mathcal{F},\varphi) to (G,ψ)(\mathcal{G},\psi) is a morphism of OS\mathcal{O}_{S}'-modules u:FGu:\mathcal{F}\to \mathcal{G} such that p2uφ=ψp1up_{2}^{*}u\circ \varphi=\psi \circ p_{1}^{*}u.

Let Φ:Qcoh(S)Qcoh(S/S)\Phi:\mathrm{Qcoh}(S)\to \mathrm{Qcoh}(S' /S) be a functor which maps F\mathcal{F} to pFp^{*}\mathcal{F} and give rise to a canonical datum φ:p1(pF)p2(pF)\varphi:p_{1}^{*}(p^{*}\mathcal{F})\xrightarrow{\simeq}p_{2}^{*}(p^{*}\mathcal{F}).

Theorem 40. Φ:Qcoh(S)Qcoh(S/S)\Phi:\mathrm{Qcoh}(S)\to \mathrm{Qcoh}(S' /S) defines an equivalence of categories.

Next we study a specific case of faithfully flat descent, using the action of a Galois group. Let GG be a finite group and SS a scheme. We can view gGS\coprod\limits_{g\in G}S as the constant group scheme over SS: It represents the functor that associate SS-scheme TT with the locally constant map TGT\to G. Denote the group scheme gG\coprod\limits_{g\in G} by GSG_{S}. The multiplication μ:GS×SGSGS\mu:G_{S}\times_{S}G_{S}\to G_{S} is given by transportation of TT-points in each component. An action of GSG_{S} on a SS-scheme SS' by SS-automorphism is a morphism σ:GS×SSS\sigma: G_{S}\times_{S} S'\to S', σ:(g,s)gs\sigma:(g,s')\mapsto gs' in TT-points.

Definition 41. Let p2:GS×SSSp_{2}:G_{S}\times_{S}S'\to S' be the projection on the section component. A GSG_{S}-equinvariant structure on quasicoherent OS\mathcal{O}_{S}-module F\mathcal{F} is an isomorphism φ:σFp2F\varphi:\sigma^{*}\mathcal{F}\xrightarrow{\simeq} p_{2}^{*}\mathcal{F} satisfying the cocycle condition

p23φ(idGS×σ)φ=(μ×idS)φ.p_{23}^{*}\varphi \circ (id_{G_{S}}\times \sigma)^{*}\varphi=(\mu\times id_{S'})\varphi.

Definition 42. A Galois covering with Galois group GSG_{S} is a faithfully flat morphism p:SSp:S\to S with a GSG_{S}-action on SS' by SS-automorphism such that the morphism GS×SSS×SSG_{S}\times_{S}S'\to S'\times_{S} S' which on TT-points (g,s)(s,gs)(g,s')\mapsto (s',gs') is an isomorphism.

Moreover, if f:YXf:Y\to X is a finite morphism of normal projective schemes with K(Y)K(Y) Galois over K(X)K(X), then ff is a Galois covering.

Let SSS'\to S be a Galois covering. We can define the GSG_{S}-equinvariant quasicoherent sheaf category QcohG(S/S)\mathrm{Qcoh}_{G}(S' /S): The objects in QcohG(S/S)\mathrm{Qcoh}_{G}(S' /S) are pairs (F,φ)(\mathcal{F},\varphi) of quasicoherent sheaves on SS' with GSG_{S}-equinvariant structure. A morphism from (F,φ)(\mathcal{F},\varphi) to (G,ψ)(\mathcal{G},\psi) are OS\mathcal{O}_{S'}-morphism u:FGu:\mathcal{F}\to \mathcal{G} such that ψσu=p2uφ\psi\circ \sigma^{*}u=p_{2}^{*}u\circ \varphi.

Similarly, we can define a functor Φ:Qcoh(S)QcohG(S/S)\Phi:\mathrm{Qcoh}(S)\to \mathrm{Qcoh}_{G}(S' /S) which maps F\mathcal{F} to pp^{*} and gives rise to canonical GSG_{S}-equinvariant structure p2pFσpFp_{2}^{*}p^{*}\mathcal{F}\xrightarrow{\simeq}\sigma^{*}p^{*}\mathcal{F}.

Theorem 43. Φ:Qcoh(S)QcohG(S/S)\Phi:\mathrm{Qcoh}(S)\to \mathrm{Qcoh}_{G}(S' /S) defines an equivalence of categories.

Ample Vector Bundles

We will summarize the important relation between ample sheaf and positive degree sheaf in this section. The original reference for this section is Ha5, and we will mainly refer Ha5 and La9 for the proofs.

Let XX be a smooth projective variety over algebraically closed field kk, E\mathcal{E} is a vector bundle on XX and π:P(E)X\pi:\mathbb{P}(\mathcal{E})\to X be the projective bundle associated to E\mathcal{E}. Denote the tautological line sheaf on P(E)\mathbb{P}(\mathcal{E}) by Oπ(1)\mathcal{O}_{\pi}(1).

Definition 44. E\mathcal{E} is ample if Oπ(1)\mathcal{O}_{\pi}(1) is ample;

E\mathcal{E} is nef if Oπ(1)\mathcal{O}_{\pi}(1) is nef.

The following proposition is straight from definition.

Proposition 45. Let E\mathcal{E} be an ample (nef) vector bundle on XX, then for any quotient F\mathcal{F} of E\mathcal{E}, F\mathcal{F} is ample (nef).

Theorem 46. Let E\mathcal{E} be a vector bundle on XX, then the followings are equivalent:

  1. E\mathcal{E} is ample.

  2. For any coherent sheaf F\mathcal{F} on XX, there is an integer m(F)m(\mathcal{F}) such that Hi(X,SmEF)=0H^{i}(X,S^{m}\mathcal{E}\otimes \mathcal{F})=0 for all i>0i>0 and mm(F)m\geq m(\mathcal{F}).

  3. For any coherent sheaf F\mathcal{F} on XX, there is an integer n(F)n(\mathcal{F}) such that SnEFS^{n}\mathcal{E}\otimes\mathcal{F} is generated by global sections for all nn(F)n\geq n(\mathcal{F}).

Using above theorem, one can show that:

Proposition 47. Let 0EEE00\to \mathcal{E}'\to \mathcal{E}\to \mathcal{E}''\to 0 be an exact sequence of vector bundles on XX. If E\mathcal{E}' and E\mathcal{E}'' are ample, then so is E\mathcal{E}.

Proposition 48. Let E\mathcal{E} be a vector bundle on XX, then the followings are equivalent:

  1. E\mathcal{E} is ample.

  2. SkES^{k}\mathcal{E} is ample for some k1k\geq 1.

  3. SkES^{k}\mathcal{E} is ample for all k1k\geq 1.

Corollary 49. Assume E\mathcal{E} and F\mathcal{F} are ample vector bundles on XX. Then EF\mathcal{E}\otimes\mathcal{F} is ample.

All propositions above are still true on varieties over kk with positive characteristic.

Theorem 50. Assume kk is algebraically closed field with characteristic zero. Let XX be a projective curve over kk and E\mathcal{E} be a semistable vector bundle of over XX. Then

  1. E\mathcal{E} is nef if and only if deg(E)0\deg(\mathcal{E})\geq 0;

  2. E\mathcal{E} is ample if and only if deg(E)>0\deg(\mathcal{E})> 0.

The assumption chark=0\mathop{\mathrm{char}}k=0 is required in Theorem 50. In fact, Serre constructed a non-singular curve XX of genus 3 over a field of characteristic 3, and a vector bundle E\mathcal{E} of rank 2 with deg(E)=1\deg(\mathcal{E})=1, while all the quotient of E\mathcal{E} has positive degree but not ample. See La4 for the example.

Reference

[1]: The Stacks Project Authors. Stacks project, 2024.

[2]: David Gieseker. Stable vector bundles and the frobenius morphism. 6(1):95–101, 1973

[3]: Ulrich Görtz and Torsten Wedhorn. Algebraic Geometry I: Schemes: With Examples and Exercises. Springer Studium Mathematik - Master. 2020.

[4]: Robin Hartshorne. Ample vector bundles on curves. Nagoya Mathematical Journal, 43:73–89, 1971.

[5]: Robin Hartshorne. Ample subvarieties of algebraic varieties, volume 156. Springer, 2006.

[6]: Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.

[7]: Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves. Cambridge University Press, 2010.

[8]: Adrian Langer. Semistable sheaves in positive characteristic. Annals of mathematics, pages 251–276, 2004.

[9]: Robert Lazarsfeld. Positivity in Algebraic Geometry II. Springer.

[10]: Masaki Maruyama. Boundedness of semi-stable sheaves of small ranks. Nagoya Mathematical Journal, 78:65–94, 1980.

[11]: Masaki Maruyama. The theorem of Grauert-Mülich-Spindler. Mathematische Annalen, 255(3):317–333, 1981.

[12]: David Mumford. Lectures on Curves on an Algebraic Surface. (AM-59). Princeton University Press, 1966.

[13]: Fumio Takemoto. Stable vector bundles on algebraic surfaces. Nagoya Mathematical Journal, 47:29–48, 1972.

评论